scholarly journals Articles selected by Faculty of 1000: phage receptor-binding proteins; genetic diversity in Toxoplasma; ribosome biogenesis and cell size; gene regulation by retrotransposons; manipulation of the cancer epigenome

2004 ◽  
Vol 5 (12) ◽  
Author(s):  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Athina Zampara ◽  
Martine C. Holst Sørensen ◽  
Dennis Grimon ◽  
Fabio Antenucci ◽  
Amira Ruslanovna Vitt ◽  
...  

2018 ◽  
Author(s):  
Athina Zampara ◽  
Martine C. Holst Sørensen ◽  
Dennis Grimon ◽  
Fabio Antenucci ◽  
Yves Briers ◽  
...  

ABSTRACTBacteriophage-encoded endolysins degrading the essential peptidoglycan of bacteria are promising alternative antimicrobials to handle the global threat of antibiotic resistant bacteria. However, endolysins have limited use against Gram-negative bacteria, since their outer membrane prevents access to the peptidoglycan. Here we present Innolysins, a novel concept for engineering endolysins that allows the enzymes to pass through the outer membrane, hydrolyse the peptidoglycan and kill the target bacterium. Innolysins combine the enzymatic activity of endolysins with the binding capacity of phage receptor binding proteins (RBPs). As our proof of concept, we used phage T5 endolysin and receptor binding protein Pb5, which binds irreversibly to the phage receptor FhuA involved in ferrichrome transport inEscherichia coli. In total, we constructed twelve Innolysins fusing endolysin with Pb5 or the binding domain of Pb5 with or without flexible linkers in between. While the majority of the Innolysins maintained their muralytic activity, Innolysin#6 also showed bactericidal activity againstE. colireducing the number of bacteria by 1 log, thus overcoming the outer membrane barrier. Using anE. coli fhuAdeletion mutant, we demonstrated that FhuA is required for bactericidal activity, supporting that the specific binding of Pb5 to its receptor onE. coliis needed for the endolysin to access the peptidoglycan. Accordingly, Innolysin#6 was able to kill other bacterial species that carry conserved FhuA homologs such asShigella sonneiandPseudomonas aeruginosa. In summary, the Innolysin approach expands recent protein engineering strategies allowing customization of endolysins by exploiting phage RBPs to specifically target Gram-negative bacteria.IMPORTANCEThe extensive use of antibiotics has led to the emergence of antimicrobial resistant bacteria responsible for infections causing more than 50,000 deaths per year across Europe and the US. In response, the World Health Organization has stressed an urgent need to discover new antimicrobials to control in particular Gram-negative bacterial pathogens, due to their extensive multi-drug resistance. However, the outer membrane of Gram-negative bacteria limits the access of many antibacterial agents to their targets. Here, we developed a new approach, Innolysins that enable endolysins to overcome the outer membrane by exploiting the binding specificity of phage receptor binding proteins. As proof of concept, we constructed Innolysins againstE. coliusing the endolysin and the receptor binding protein of phage T5. Given the rich diversity of phage receptor binding proteins and their different binding specificities, our proof of concept paves the route for creating an arsenal of pathogen specific alternative antimicrobials.


mSystems ◽  
2020 ◽  
Vol 5 (3) ◽  
Author(s):  
Rafael Gonzalez-Serrano ◽  
Matthew Dunne ◽  
Riccardo Rosselli ◽  
Ana-Belen Martin-Cuadrado ◽  
Virginie Grosboillot ◽  
...  

ABSTRACT Marine phages play a variety of critical roles in regulating the microbial composition of our oceans. Despite constituting the majority of genetic diversity within these environments, there are relatively few isolates with complete genome sequences or in-depth analyses of their host interaction mechanisms, such as characterization of their receptor binding proteins (RBPs). Here, we present the 92,760-bp genome of the Alteromonas-targeting phage V22. Genomic and morphological analyses identify V22 as a myovirus; however, due to a lack of sequence similarity to any other known myoviruses, we propose that V22 be classified as the type phage of a new Myoalterovirus genus within the Myoviridae family. V22 shows gene homology and synteny with two different subfamilies of phages infecting enterobacteria, specifically within the structural region of its genome. To improve our understanding of the V22 adsorption process, we identified putative RBPs (gp23, gp24, and gp26) and tested their ability to decorate the V22 propagation strain, Alteromonas mediterranea PT11, as recombinant green fluorescent protein (GFP)-tagged constructs. Only GFP-gp26 was capable of bacterial recognition and identified as the V22 RBP. Interestingly, production of functional GFP-gp26 required coexpression with the downstream protein gp27. GFP-gp26 could be expressed alone but was incapable of host recognition. By combining size-exclusion chromatography with fluorescence microscopy, we reveal how gp27 is not a component of the final RBP complex but instead is identified as a new type of phage-encoded intermolecular chaperone that is essential for maturation of the gp26 RBP. IMPORTANCE Host recognition by phage-encoded receptor binding proteins (RBPs) constitutes the first step in all phage infections and the most critical determinant of host specificity. By characterizing new types of RBPs and identifying their essential chaperones, we hope to expand the repertoire of known phage-host recognition machineries. Due to their genetic plasticity, studying RBPs and their associated chaperones can shed new light onto viral evolution affecting phage-host interactions, which is essential for fields such as phage therapy or biotechnology. In addition, since marine phages constitute one of the most important reservoirs of noncharacterized genetic diversity on the planet, their genomic and functional characterization may be of paramount importance for the discovery of novel genes with potential applications.


mBio ◽  
2022 ◽  
Author(s):  
Eoghan Casey ◽  
Brian McDonnell ◽  
Kelsey White ◽  
Panagiota Stamou ◽  
Tadhg Crowley ◽  
...  

PhRACS aims to bridge the current divide between in silico genetic analyses (i.e., phageomic studies) and traditional culture-based methodology. Through the labeling of specific bacterial hosts with fluorescently tagged recombinant phage receptor binding proteins and the isolation of tagged cells using flow cytometry, PhRACS allows the full potential of phageomic data to be realized in the wet laboratory.


2021 ◽  
Vol 49 (7) ◽  
pp. 3856-3875
Author(s):  
Marina Kulik ◽  
Melissa Bothe ◽  
Gözde Kibar ◽  
Alisa Fuchs ◽  
Stefanie Schöne ◽  
...  

Abstract The glucocorticoid (GR) and androgen (AR) receptors execute unique functions in vivo, yet have nearly identical DNA binding specificities. To identify mechanisms that facilitate functional diversification among these transcription factor paralogs, we studied them in an equivalent cellular context. Analysis of chromatin and sequence suggest that divergent binding, and corresponding gene regulation, are driven by different abilities of AR and GR to interact with relatively inaccessible chromatin. Divergent genomic binding patterns can also be the result of subtle differences in DNA binding preference between AR and GR. Furthermore, the sequence composition of large regions (>10 kb) surrounding selectively occupied binding sites differs significantly, indicating a role for the sequence environment in guiding AR and GR to distinct binding sites. The comparison of binding sites that are shared shows that the specificity paradox can also be resolved by differences in the events that occur downstream of receptor binding. Specifically, shared binding sites display receptor-specific enhancer activity, cofactor recruitment and changes in histone modifications. Genomic deletion of shared binding sites demonstrates their contribution to directing receptor-specific gene regulation. Together, these data suggest that differences in genomic occupancy as well as divergence in the events that occur downstream of receptor binding direct functional diversification among transcription factor paralogs.


2017 ◽  
Vol 32 ◽  
pp. 76-84 ◽  
Author(s):  
Zhuoying Liu ◽  
Ting Xiao ◽  
Xiaoyu Peng ◽  
Guangdi Li ◽  
Fang Hu

Sign in / Sign up

Export Citation Format

Share Document