scholarly journals Visualization and quantification of dynamic intercellular coupling in human embryonic stem cells using single cell sonoporation

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Zhenzhen Fan ◽  
Xufeng Xue ◽  
Jianping Fu ◽  
Cheri X. Deng

Abstract Gap junctions (GJs), which are proteinaceous channels, couple adjacent cells by permitting direct exchange of intracellular molecules with low molecular weights. GJ intercellular communication (GJIC) plays a critical role in regulating behaviors of human embryonic stem cells (hESCs), affecting their proliferation and differentiation. Here we report a novel use of sonoporation that enables single cell intracellular dye loading and dynamic visualization/quantification of GJIC in hESC colonies. By applying a short ultrasound pulse to excite single microbubbles tethered to cell membranes, a transient pore on the cell membrane (sonoporation) is generated which allows intracellular loading of dye molecules and influx of Ca2+ into single hESCs. We employ live imaging for continuous visualization of intercellular dye transfer and Ca2+ diffusion in hESC colonies. We quantify cell–cell permeability based on dye diffusion using mass transport models. Our results reveal heterogeneous intercellular connectivity and a variety of spatiotemporal characteristics of intercellular Ca2+ waves in hESC colonies induced by sonoporation of single cells.

Blood ◽  
2011 ◽  
Vol 117 (11) ◽  
pp. 3065-3075 ◽  
Author(s):  
Olena Klimchenko ◽  
Antonio Di Stefano ◽  
Birgit Geoerger ◽  
Sofiane Hamidi ◽  
Paule Opolon ◽  
...  

Abstract The early emergence of macrophages and their large pattern of tissue distribution during development suggest that they may play a critical role in the initial steps of embryogenesis. In the present study, we show that monocytic cells derived from human embryonic stem cells (hESCs) and from fetal liver follow a differentiation pathway different to that of adult cells, leading to specific functions. Embryonic and fetal monocytic cells differentiated from a CD14lowCD16− precursor to form CD14highCD16+ cells without producing the CD14highCD16− cell population that predominates in adult peripheral blood. Both demonstrated an enhanced expression of genes encoding tissue-degrading enzymes, chemokines, and scavenger receptors, as was previously reported for M2 macrophages. Compared with adult blood monocytes, embryonic and fetal monocytic cells secreted high amounts of proteins acting on tissue remodeling and angiogenesis, and most of them expressed the Tie2 receptor. Furthermore, they promoted vascular remodeling in xenotransplanted human tumors. These findings suggest that the regulation of human fetal and embryonic monocytic cell differentiation leads to the generation of cells endowed mainly with anti-inflammatory and remodeling functions. Trophic and immunosuppressive functions of M2-polarized macrophages link fetus and tumor development, and hESCs offer a valuable experimental model for in vitro studies of mechanisms sustaining these processes.


2018 ◽  
Vol 10 (6) ◽  
pp. 1895-1907 ◽  
Author(s):  
Thomas F. Allison ◽  
Andrew J.H. Smith ◽  
Konstantinos Anastassiadis ◽  
Jackie Sloane-Stanley ◽  
Veronica Biga ◽  
...  

2008 ◽  
Vol 75 (5) ◽  
pp. 818-827 ◽  
Author(s):  
Ruchi Bajpai ◽  
Jacqueline Lesperance ◽  
Min Kim ◽  
Alexey V. Terskikh

2016 ◽  
Vol 25 (6) ◽  
pp. 477-491 ◽  
Author(s):  
Hui Liu ◽  
Caiping Ren ◽  
Bin Zhu ◽  
Lei Wang ◽  
Weidong Liu ◽  
...  

2010 ◽  
Vol 4 (3) ◽  
pp. 165-179 ◽  
Author(s):  
Harmeet Singh ◽  
Pamela Mok ◽  
Thavamalar Balakrishnan ◽  
Siti Norfiza Binte Rahmat ◽  
Robert Zweigerdt

2009 ◽  
Vol 55 (12) ◽  
pp. 2162-2170 ◽  
Author(s):  
Anders Ståhlberg ◽  
Martin Bengtsson ◽  
Martin Hemberg ◽  
Henrik Semb

Abstract Background: Human embryonic stem cells (hESCs) require expression of transcription factor genes POU5F1 (POU class 5 homeobox 1), NANOG (Nanog homeobox), and SOX2 [SRY (sex determining region Y)-box 2] to maintain their capacity for self-renewal and pluripotency. Because of the heterogeneous nature of cell populations, it is desirable to study the gene regulation in single cells. Large and potentially important fluctuations in a few cells cannot be detected at the population scale with microarrays or sequencing technologies. We used single-cell gene expression profiling to study cell heterogeneity in hESCs. Methods: We collected 47 single hESCs from cell line SA121 manually by glass capillaries and 57 single hESCs from cell line HUES3 by flow cytometry. Single hESCs were lysed and reverse-transcribed. Reverse-transcription quantitative real-time PCR was then used to measure the expression POU5F1, NANOG, SOX2, and the inhibitor of DNA binding genes ID1, ID2, and ID3. A quantitative noise model was used to remove measurement noise when pairwise correlations were estimated. Results: The numbers of transcripts per cell varied >100-fold between cells and showed lognormal features. POU5F1 expression positively correlated with ID1 and ID3 expression (P < 0.05) but not with NANOG or SOX2 expression. When we accounted for measurement noise, SOX2 expression was also correlated with ID1, ID2, and NANOG expression (P < 0.05). Conclusions: We demonstrate an accurate method for transcription profiling of individual hESCs. Cell-to-cell variability is large and is at least partly nonrandom because we observed correlations between core transcription factors. High fluctuations in gene expression may explain why individual cells in a seemingly undifferentiated cell population have different susceptibilities for inductive cues.


2019 ◽  
Vol 235 (6) ◽  
pp. 5241-5255 ◽  
Author(s):  
Martha E. Diaz‐Hernandez ◽  
Nazir M. Khan ◽  
Camila M. Trochez ◽  
Tim Yoon ◽  
Peter Maye ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document