scholarly journals Probing local distortion around structural defects in half-Heusler thermoelectric NiZrSn alloy

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hidetoshi Miyazaki ◽  
Osman Murat Ozkendir ◽  
Selen Gunaydin ◽  
Kosuke Watanabe ◽  
Kazuo Soda ◽  
...  

AbstractThe half-Heusler NiZrSn (NZS) alloy is particularly interesting owing to its excellent thermoelectric properties, mechanical strength, and oxidation resistance. However, the experimentally investigated thermal conductivity of half-Heusler NZS alloys shows discrepancies when compared to the theoretical predictions. This study investigates the crystal structure around atomic defects by comparing experimental and theoretical X-ray absorption fine structure (XAFS) spectra of the crystal structure of a half-Heusler NZS alloy. The results of both Zr and Ni K-edge XAFS spectra verified the existence of atomic defects at the vacancy sites distorting the C1b-type crystal structure. We concluded that the distortion of the atoms around the interstitial Ni disorder could be the probable reason for the observed lower thermal conductivity values compared to that predicted theoretically in half-Heusler alloys. Our study makes a significant contribution to the literature because the detailed investigation of the lattice distortion around atomic defects will pave the way to further reduce the thermal conductivity by controlling this distortion.

2009 ◽  
Vol 64 (3) ◽  
pp. 281-286 ◽  
Author(s):  
Suliman Nakhal ◽  
Wilfried Hermes ◽  
Thorsten Ressler ◽  
Rainer Pöttgen ◽  
Martin Lerch

Ammonolysis of vanadium sulfide leads to the formation of bixbyite-type vanadium oxide nitrides. Small amounts of nitrogen incorporated in the structure result in the stabilization of the bixbyite type not known for vanadium oxides. The crystal structure was investigated using X-ray diffraction and X-ray absorption spectroscopy. At temperatures above 550 °C the powders decompose to corundumtype V2O3 containing no detectable amount of nitrogen. Below 39 K magnetic ordering is observed.


1997 ◽  
Vol 12 (3) ◽  
pp. 799-804 ◽  
Author(s):  
M. Valant ◽  
I. Arčon ◽  
D. Suvorov ◽  
A. Kodre ◽  
T. Negas ◽  
...  

In the extended x-ray absorption fine structure (EXAFS) study of the local environment of Bi3+ and Pb2+ ions incorporated in Ba4.5Nd9Ti18O54, actual sites of Bi- and Pb-incorporation are determined. Evidence is given that dopant ions are not distributed randomly on all theoretically possible sites; Bi3+ selectively enters one out of three possible channels, corresponding to the sites x = 0.9484, y = 0.2500, z = 0.2939, and/or x = 0.0455, y = 0.2500, z = 0.6928 previously occupied by Nd3+, while Pb2+ selectively enters site x = 0.4940, y = 0.2500, and z = 0.4993 previously shared by Ba2+ and Nd3+.


2019 ◽  
Vol 10 ◽  
pp. 2073-2083
Author(s):  
Andrea Giaccherini ◽  
Giuseppe Cucinotta ◽  
Stefano Martinuzzi ◽  
Enrico Berretti ◽  
Werner Oberhauser ◽  
...  

The new generation of solar cells aims to overcome many of the issues created by silicon-based devices (e.g., decommissioning, flexibility and high-energy production costs). Due to the scarcity of the resources involved in the process and the need for the reduction of potential pollution, a greener approach to solar cell material production is required. Among others, the solvothermal approach for the synthesis of nanocrystalline Cu–Sn–S (CTS) materials fulfils all of these requirements. The material constraints must be considered, not only for the final product, but for the whole production process. Most works reporting the successful synthesis of CTS have employed surfactants, high pressure or noxious solvents. In this paper, we demonstrate the synthesis of nanocrystalline kuramite by means of a simpler, greener and scalable solvothermal synthesis. We exploited a multianalytical characterization approach (X-ray diffraction, extended X-ray absorption fine structure, field emission scanning electron microscopy, Raman spectroscopy and electronic microprobe analysis (EMPA)) to discriminate kuramite from other closely related polymorphs. Moreover, we confirmed the presence of structural defects due to a relevant antisite population.


Sign in / Sign up

Export Citation Format

Share Document