scholarly journals Peptidoglycan mediates Leptospira outer membrane protein Loa22 to toll-like receptor 2 for inflammatory interaction: a novel innate immune recognition

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shen-Hsing Hsu ◽  
Ming-Yang Chang ◽  
Shih-Ming Lin ◽  
Yi-Ching Ko ◽  
Li-Feng Chou ◽  
...  

AbstractLeptospirosis is an overlooked zoonotic disease caused by pathogenic Leptospira depended on virulence of Leptospira and the host–pathogen interaction. Kidney is the major organ infected by Leptospira which causes tubulointerstitial nephritis. Leptospira outer membrane contains several virulence factors and an outer membrane protein A (OmpA) like protein (Loa22) is essential for virulence. Pull-down assays suggested that Loa22 was a potential Toll-Like Receptor 2 (TLR2) binding candidates from pathogenic Leptospira. Confocal microscopy was employed to observe the co-localization of TLR2 and Loa22-LPGN (Leptospira peptidoglycan) complexes. Atomic force microscopy (AFM), side-directed mutagenesis, and enzyme-linked immunosorbent assay (ELISA) were performed to investigate the affinity between rLoa22, LPGN, and TLR2. Real time PCR was applied to measure the cytokines expression. Downstream signal transduction components were verified by western blot to evaluate the gene regulations. Mutation of two Loa22 key residues (Asp122 and Arg143) attenuated the affinities for LPGN. rLoa22-LPGN complexes were observed to co-localize with TLR2 and provoked inflammatory responses including CXCL8/IL8, hCCL2/MCP-1, and hTNF-α. Affinity studies suggested that Loa22-LPGN complexes elevated the affinity to TLR2 as compared to Loa22 protein. Downstream signals from TLR2 including p38, ERK, and JNK were regulated under rLoa22-LPGN complexes treatments. This study identified LPGN mediates interactions between Loa22 and TLR2 and induces downstream signals to trigger inflammatory responses. rLoa22-LPGN-TLR2 complexes reveal a novel binding mechanism for the innate immune system.

2020 ◽  
Vol 19 (1) ◽  
pp. 155-162
Author(s):  
Chen Chen ◽  
Nana Wu ◽  
Na Rong ◽  
Chao Kang ◽  
Chunlin Chen ◽  
...  

Purpose: To evaluate prokaryotic expression of the Escherichia coli (E. coli) outer membrane protein A (OmpA) and its immunoprotective function against the main pathogens of animal mastitis.Methods: A molecular cloning method was used to develop a prokaryotic strain expressing OmpA protein, which was purified by Ni-affinity  chromatography. Polyclonal antiserum was generated in mice immunized with OmpA protein. Enzyme-linked immunosorbent assay (ELISA) and western blotting were used to determine the titer and verify anti-OmpA serum specificity, respectively. Interaction between OmpA antiserum and main pathogens of animal mastitis was verified by ELISA and a pull-down method. The immune protective function of OmpA protein was evaluated in mice challenged with pathogens of animal mastitis. Optimal fermentation conditions to produce OmpA protein were determined by the L9(34) orthogonal test.Results: A prokaryotic strain expressing OmpA protein was developed, and purified OmpA was used to develop a mouse polyclonal antibody. The anti-OmpA serum exhibited high specificity and a titer of 1:1600. Anti-OmpA serum directly interacted with E. coli and Staphylococcus aureus (S. aureus). OmpA demonstrated a significant immune protective function of 58.33 % against E. coli and 46.15 % against S. aureus. The optimal conditions for expressing fermentation OmpA were a strain absorbance of 0.5 at a wavelength of 600 nm, IPTG final concentration of 0.3 mmol/L, induction time of 12 h, and induction temperature of 28 °C.Conclusion: OmpA possesses selective immunogenicity and a significant immune protective effect against the main pathogens of animal mastitis. The results suggest that OmpA may potentially be used as a vaccine for animal mastitis. Keywords: E. coli, OmpA protein, Immunoprotection, Animal mastitis, Protein fermentation


Author(s):  
Kobra Mehdinejadiani ◽  
Mojgan Bandehpour ◽  
Ali Hashemi ◽  
Mohammad Mehdi Ranjbar ◽  
Sodabeh Taheri ◽  
...  

Acinetobacter baumannii is a Gram-negative bacterium that has recently been identified as a leading nosocomial pathogen. Infections by this pathogen result in significant mortality due to antibiotic resistance. An effective vaccine would help alleviate the burden of disease incurred by this pathogen; however, there are currently no licensed vaccines offering protection against Acinetobacter baumannii infection. In this study, considering the fact that outer membrane protein A is one of the most promising vaccine candidates, we predicted T cell and B cell epitopes on this protein using sequence-based epitope prediction tools and determined whether or not mice immunized with these peptides induce an immune response. We selected consensus epitopes including five peptides in different tools with the highest score. 48 female C5BL/6 SPF injected subcutaneously with the peptides (peptide1 to peptide 5 separately) in 100 μL of the solution and sham groups received adjuvant and PBS alone on the same schedule: on day 0 (primary dose) and two booster doses were administered on days 14 and 28. At the end of time, animals euthanized by Isoflurane, and collected sera for assessment of specific antibodies against each peptide by ELISA (Enzyme-linked immunosorbent assay). Immunization of mice showed one of the novel synthetic peptides (peptide 1 (24-50 amino acids)) elicited immune responses. We conclude to combine theoretical methods of epitope prediction and evaluating the potential of immunogenicity for developing vaccines is important.


2011 ◽  
Vol 286 (12) ◽  
pp. 9956-9967 ◽  
Author(s):  
Catalina March ◽  
David Moranta ◽  
Verónica Regueiro ◽  
Enrique Llobet ◽  
Anna Tomás ◽  
...  

Outer membrane protein A (OmpA) is a class of proteins highly conserved among the Enterobacteriaceae family and throughout evolution. Klebsiella pneumoniae is a capsulated Gram-negative pathogen. It is an important cause of community-acquired and nosocomial pneumonia. Evidence indicates that K. pneumoniae infections are characterized by a lack of an early inflammatory response. Data from our laboratory indicate that K. pneumoniae CPS helps to suppress the host inflammatory response. However, it is unknown whether K. pneumoniae employs additional factors to modulate host inflammatory responses. Here, we report that K. pneumoniae OmpA is important for immune evasion in vitro and in vivo. Infection of A549 and normal human bronchial cells with 52OmpA2, an ompA mutant, increased the levels of IL-8. 52145-ΔwcaK2ompA, which does not express CPS and ompA, induced the highest levels of IL-8. Both mutants could be complemented. In vivo, 52OmpA2 induced higher levels of tnfα, kc, and il6 than the wild type. ompA mutants activated NF-κB, and the phosphorylation of p38, p44/42, and JNK MAPKs and IL-8 induction was via NF-κB-dependent and p38- and p44/42-dependent pathways. 52OmpA2 engaged TLR2 and -4 to activate NF-κB, whereas 52145-ΔwcaK2ompA activated not only TLR2 and TLR4 but also NOD1. Finally, we demonstrate that the ompA mutant is attenuated in the pneumonia mouse model. The results of this study indicate that K. pneumoniae OmpA contributes to attenuate airway cell responses. This may facilitate pathogen survival in the hostile environment of the lung.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Shen-Hsing Hsu ◽  
Cheng-Chieh Hung ◽  
Ming-Yang Chang ◽  
Yi-Ching Ko ◽  
Huang-Yu Yang ◽  
...  

Author(s):  
Ángel Rodríguez-Villodres ◽  
Rocío Álvarez-Marín ◽  
María Antonia Pérez-Moreno ◽  
Andrea Miró-Canturri ◽  
Marco Durán Lobato ◽  
...  

2003 ◽  
Vol 10 (1) ◽  
pp. 103-107 ◽  
Author(s):  
I. Portig ◽  
J. C. Goodall ◽  
R. L. Bailey ◽  
J. S. H. Gaston

ABSTRACT Detection of antibodies to an outer membrane protein 2 (OMP2) by enzyme-linked immunosorbent assay (ELISA) by using either the Chlamydia trachomatis- or the Chlamydia pneumoniae-specific protein was investigated. OMP2 is an immunodominant antigen giving rise to antibody responses in humans infected with different C. trachomatis serovars (A to C and D to K) or with C. pneumoniae, which could be detected by OMP2 ELISA. OMP2 ELISA is not species specific, but antibody titers were usually higher on the homologous protein. The sensitivity of this assay was high but varied according to the “gold standard” applied. Levels of antibody to C. pneumoniae OMP2 as detected by ELISA seem to return to background or near-background values within a shorter period of time compared to antibodies to C. pneumoniae detected by microimmunofluorescence (MIF), making it more likely that positive results in ELISA reflect recent infection. Thus, OMP2 ELISA has distinct advantages over MIF and commercially available ELISAs and might be a useful tool for the serodiagnosis of chlamydial infection.


2012 ◽  
Vol 80 (11) ◽  
pp. 3748-3760 ◽  
Author(s):  
Nore Ojogun ◽  
Amandeep Kahlon ◽  
Stephanie A. Ragland ◽  
Matthew J. Troese ◽  
Juliana E. Mastronunzio ◽  
...  

ABSTRACTAnaplasma phagocytophilumis the tick-transmitted obligate intracellular bacterium that causes human granulocytic anaplasmosis (HGA).A. phagocytophilumbinding to sialyl Lewis x (sLex) and other sialylated glycans that decorate P selectin glycoprotein 1 (PSGL-1) and other glycoproteins is critical for infection of mammalian host cells. Here, we demonstrate the importance ofA. phagocytophilumouter membrane protein A (OmpA) APH_0338 in infection of mammalian host cells. OmpA is transcriptionally induced during transmission feeding ofA. phagocytophilum-infected ticks on mice and is upregulated during invasion of HL-60 cells. OmpA is presented on the pathogen's surface. Sera from HGA patients and experimentally infected mice recognize recombinant OmpA. Pretreatment ofA. phagocytophilumorganisms with OmpA antiserum reduces their abilities to infect HL-60 cells. The OmpA N-terminal region is predicted to contain the protein's extracellular domain. GlutathioneS-transferase (GST)-tagged versions of OmpA and OmpA amino acids 19 to 74 (OmpA19-74) but not OmpA75-205bind to, and competitively inhibitA. phagocytophiluminfection of, host cells. Pretreatment of host cells with sialidase or trypsin reduces or nearly eliminates, respectively, GST-OmpA adhesion. Therefore, OmpA interacts with sialylated glycoproteins. This study identifies the firstA. phagocytophilumadhesin-receptor pair and delineates the region of OmpA that is critical for infection.


Sign in / Sign up

Export Citation Format

Share Document