scholarly journals An auditory-visual tradeoff in susceptibility to clutter

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Min Zhang ◽  
Rachel N Denison ◽  
Denis G Pelli ◽  
Thuy Tien C Le ◽  
Antje Ihlefeld

AbstractSensory cortical mechanisms combine auditory or visual features into perceived objects. This is difficult in noisy or cluttered environments. Knowing that individuals vary greatly in their susceptibility to clutter, we wondered whether there might be a relation between an individual’s auditory and visual susceptibilities to clutter. In auditory masking, background sound makes spoken words unrecognizable. When masking arises due to interference at central auditory processing stages, beyond the cochlea, it is called informational masking. A strikingly similar phenomenon in vision, called visual crowding, occurs when nearby clutter makes a target object unrecognizable, despite being resolved at the retina. We here compare susceptibilities to auditory informational masking and visual crowding in the same participants. Surprisingly, across participants, we find a negative correlation (R = –0.7) between susceptibility to informational masking and crowding: Participants who have low susceptibility to auditory clutter tend to have high susceptibility to visual clutter, and vice versa. This reveals a tradeoff in the brain between auditory and visual processing.

2021 ◽  
Author(s):  
Min Zhang ◽  
Rachel N Denison ◽  
Denis G Pelli ◽  
Thuy Tien C Le ◽  
Antje Ihlefeld

AbstractIn noisy or cluttered environments, sensory cortical mechanisms help combine auditory or visual features into perceived objects. Knowing that individuals vary greatly in their ability to suppress unwanted sensory information, and knowing that the sizes of auditory and visual cortical regions are correlated, we wondered whether there might be a corresponding relation between an individual’s ability to suppress auditory vs. visual interference. In auditory masking, background sound makes spoken words unrecognizable. When masking arises due to interference at central auditory processing stages, beyond the cochlea, it is called informational masking (IM). A strikingly similar phenomenon in vision, called visual crowding, occurs when nearby clutter makes a target object unrecognizable, despite being resolved at the retina. We here compare susceptibilities to auditory IM and visual crowding in the same participants. Surprisingly, across participants, we find a negative correlation (R = −0.7) between IM susceptibility and crowding susceptibility: Participants who have low susceptibility to IM tend to have high susceptibility to crowding, and vice versa. This reveals a mid-level trade-off between auditory and visual processing.


Author(s):  
Josef P. Rauschecker

When one talks about hearing, some may first imagine the auricle (or external ear), which is the only visible part of the auditory system in humans and other mammals. Its shape and size vary among people, but it does not tell us much about a person’s abilities to hear (except perhaps their ability to localize sounds in space, where the shape of the auricle plays a certain role). Most of what is used for hearing is inside the head, particularly in the brain. The inner ear transforms mechanical vibrations into electrical signals; then the auditory nerve sends these signals into the brainstem, where intricate preprocessing occurs. Although auditory brainstem mechanisms are an important part of central auditory processing, it is the processing taking place in the cerebral cortex (with the thalamus as the mediator), which enables auditory perception and cognition. Human speech and the appreciation of music can hardly be imagined without a complex cortical network of specialized regions, each contributing different aspects of auditory cognitive abilities. During the evolution of these abilities in higher vertebrates, especially birds and mammals, the cortex played a crucial role, so a great deal of what is referred to as central auditory processing happens there. Whether it is the recognition of one’s mother’s voice, listening to Pavarotti singing or Yo-Yo Ma playing the cello, hearing or reading Shakespeare’s sonnets, it will evoke electrical vibrations in the auditory cortex, but it does not end there. Large parts of frontal and parietal cortex receive auditory signals originating in auditory cortex, forming processing streams for auditory object recognition and auditory-motor control, before being channeled into other parts of the brain for comprehension and enjoyment.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yang Wenyi Liu ◽  
Bing Wang ◽  
Bing Chen ◽  
John J. Galvin ◽  
Qian-Jie Fu

AbstractMany tinnitus patients report difficulties understanding speech in noise or competing talkers, despite having “normal” hearing in terms of audiometric thresholds. The interference caused by tinnitus is more likely central in origin. Release from informational masking (more central in origin) produced by competing speech may further illuminate central interference due to tinnitus. In the present study, masked speech understanding was measured in normal hearing listeners with or without tinnitus. Speech recognition thresholds were measured for target speech in the presence of multi-talker babble or competing speech. For competing speech, speech recognition thresholds were measured for different cue conditions (i.e., with and without target-masker sex differences and/or with and without spatial cues). The present data suggest that tinnitus negatively affected masked speech recognition even in individuals with no measurable hearing loss. Tinnitus severity appeared to especially limit listeners’ ability to segregate competing speech using talker sex differences. The data suggest that increased informational masking via lexical interference may tax tinnitus patients’ central auditory processing resources.


2009 ◽  
Vol 21 (2) ◽  
pp. 259-274 ◽  
Author(s):  
Ingo Hertrich ◽  
Klaus Mathiak ◽  
Werner Lutzenberger ◽  
Hermann Ackermann

Cross-modal fusion phenomena suggest specific interactions of auditory and visual sensory information both within the speech and nonspeech domains. Using whole-head magnetoencephalography, this study recorded M50 and M100 fields evoked by ambiguous acoustic stimuli that were visually disambiguated to perceived /ta/ or /pa/ syllables. As in natural speech, visual motion onset preceded the acoustic signal by 150 msec. Control conditions included visual and acoustic nonspeech signals as well as visual-only and acoustic-only stimuli. (a) Both speech and nonspeech motion yielded a consistent attenuation of the auditory M50 field, suggesting a visually induced “preparatory baseline shift” at the level of the auditory cortex. (b) Within the temporal domain of the auditory M100 field, visual speech and nonspeech motion gave rise to different response patterns (nonspeech: M100 attenuation; visual /pa/: left-hemisphere M100 enhancement; /ta/: no effect). (c) These interactions could be further decomposed using a six-dipole model. One of these three pairs of dipoles (V270) was fitted to motion-induced activity at a latency of 270 msec after motion onset, that is, the time domain of the auditory M100 field, and could be attributed to the posterior insula. This dipole source responded to nonspeech motion and visual /pa/, but was found suppressed in the case of visual /ta/. Such a nonlinear interaction might reflect the operation of a binary distinction between the marked phonological feature “labial” versus its underspecified competitor “coronal.” Thus, visual processing seems to be shaped by linguistic data structures even prior to its fusion with auditory information channel.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Joseph P. Pillion

Deficits in central auditory processing may occur in a variety of clinical conditions including traumatic brain injury, neurodegenerative disease, auditory neuropathy/dyssynchrony syndrome, neurological disorders associated with aging, and aphasia. Deficits in central auditory processing of a more subtle nature have also been studied extensively in neurodevelopmental disorders in children with learning disabilities, ADD, and developmental language disorders. Illustrative cases are reviewed demonstrating the use of an audiological test battery in patients with auditory neuropathy/dyssynchrony syndrome, bilateral lesions to the inferior colliculi, and bilateral lesions to the temporal lobes. Electrophysiological tests of auditory function were utilized to define the locus of dysfunction at neural levels ranging from the auditory nerve, midbrain, and cortical levels.


Author(s):  
Anna Rasmus ◽  
Aleksandra Błachnio

Background: Language communication, which is one of the basic forms of building and maintaining interpersonal relationships, deteriorates in elder age. One of the probable causes is a decline in auditory functioning, including auditory central processing. The aim of the present study is to evaluate the profile of central auditory processing disorders in the elderly as well as the relationship between these disorders and the perception of emotional and linguistic prosody. Methods: The Right Hemisphere Language Battery (RHLB-PL), and the Brain-Boy Universal Professional (BUP) were used. Results: There are statistically significant relationships between emotional prosody and: spatial hearing (r(18) = 0.46, p = 0.04); the time of the reaction (r(18) = 0.49, p = 0.03); recognizing the frequency pattern (r(18) = 0.49, p = 0.03 (4); and recognizing the duration pattern (r(18) = 0.45, p = 0.05. There are statistically significant correlations between linguistic prosody and: pitch discrimination (r(18) = 0.5, p = 0.02); recognition of the frequency pattern (r(18) = 0.55, p = 0.01); recognition of the temporal pattern; and emotional prosody (r(18) = 0.58, p = 0.01). Conclusions: The analysis of the disturbed components of auditory central processing among the tested samples showed a reduction in the functions related to frequency differentiation, the recognition of the temporal pattern, the process of discriminating between important sounds, and the speed of reaction. De-automation of the basic functions of auditory central processing, which we observe in older age, lowers the perception of both emotional and linguistic prosody, thus reducing the quality of communication in older people.


2021 ◽  
pp. 174702182199003
Author(s):  
Andy J Kim ◽  
David S Lee ◽  
Brian A Anderson

Previously reward-associated stimuli have consistently been shown to involuntarily capture attention in the visual domain. Although previously reward-associated but currently task-irrelevant sounds have also been shown to interfere with visual processing, it remains unclear whether such stimuli can interfere with the processing of task-relevant auditory information. To address this question, we modified a dichotic listening task to measure interference from task-irrelevant but previously reward-associated sounds. In a training phase, participants were simultaneously presented with a spoken letter and number in different auditory streams and learned to associate the correct identification of each of three letters with high, low, and no monetary reward, respectively. In a subsequent test phase, participants were again presented with the same auditory stimuli but were instead instructed to report the number while ignoring spoken letters. In both the training and test phases, response time measures demonstrated that attention was biased in favour of the auditory stimulus associated with high value. Our findings demonstrate that attention can be biased towards learned reward cues in the auditory domain, interfering with goal-directed auditory processing.


Sign in / Sign up

Export Citation Format

Share Document