scholarly journals Tinnitus impairs segregation of competing speech in normal-hearing listeners

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yang Wenyi Liu ◽  
Bing Wang ◽  
Bing Chen ◽  
John J. Galvin ◽  
Qian-Jie Fu

AbstractMany tinnitus patients report difficulties understanding speech in noise or competing talkers, despite having “normal” hearing in terms of audiometric thresholds. The interference caused by tinnitus is more likely central in origin. Release from informational masking (more central in origin) produced by competing speech may further illuminate central interference due to tinnitus. In the present study, masked speech understanding was measured in normal hearing listeners with or without tinnitus. Speech recognition thresholds were measured for target speech in the presence of multi-talker babble or competing speech. For competing speech, speech recognition thresholds were measured for different cue conditions (i.e., with and without target-masker sex differences and/or with and without spatial cues). The present data suggest that tinnitus negatively affected masked speech recognition even in individuals with no measurable hearing loss. Tinnitus severity appeared to especially limit listeners’ ability to segregate competing speech using talker sex differences. The data suggest that increased informational masking via lexical interference may tax tinnitus patients’ central auditory processing resources.

2020 ◽  
Vol 63 (8) ◽  
pp. 2811-2824
Author(s):  
Ji-Sheng Liu ◽  
Ya-Feng Yu ◽  
Duo-Duo Tao ◽  
Yi Li ◽  
Fei Ye ◽  
...  

Purpose For colocated targets and maskers, binaural listening typically offers a small but significant advantage over monaural listening. This study investigated how monaural asymmetry and target–masker similarity may limit binaural advantage in adults and children. Method Ten Mandarin-speaking Chinese adults (aged 22–27 years) and 12 children (aged 7–14 years) with normal hearing participated in the study. Monaural and binaural speech recognition thresholds (SRTs) were adaptively measured for colocated competing speech. The target–masker sex was the same or different. Performance was measured using headphones for three listening conditions: left ear, right ear, and both ears. Binaural advantage was calculated relative to the poorer or better ear. Results Mean SRTs were significantly lower for adults than children. When the target–masker sex was the same, SRTs were significantly lower with the better ear than with the poorer ear or both ears ( p < .05). When the target–masker sex was different, SRTs were significantly lower with the better ear or both ears than with the poorer ear ( p < .05). Children and adults similarly benefitted from target–masker sex differences. Substantial monaural asymmetry was observed, but the effects of asymmetry on binaural advantage were similar between adults and children. Monaural asymmetry was significantly correlated with binaural advantage relative to the poorer ear ( p = .004), but not to the better ear ( p = .056). Conclusions Binaural listening may offer little advantage (or even a disadvantage) over monaural listening with the better ear, especially when competing talkers have similar vocal characteristics. Monaural asymmetry appears to limit binaural advantage in listeners with normal hearing, similar to observations in listeners with hearing impairment. While language development may limit perception of competing speech, it does not appear to limit the effects of monaural asymmetry or target–masker sex on binaural advantage.


2018 ◽  
Vol 22 (04) ◽  
pp. 408-414 ◽  
Author(s):  
Signe Grasel ◽  
Mario Greters ◽  
Maria Goffi-Gomez ◽  
Roseli Bittar ◽  
Raimar Weber ◽  
...  

Introduction The P3 cognitive evoked potential is recorded when a subject correctly identifies, evaluates and processes two different auditory stimuli. Objective to evaluate the latency and amplitude of the P3 evoked potential in 26 cochlear implant users with post-lingual deafness with good or poor speech recognition scores as compared with normal hearing subjects matched for age and educational level. Methods In this prospective cohort study, auditory cortical responses were recorded from 26 post-lingual deaf adult cochlear implant users (19 with good and 7 with poor speech recognition scores) and 26 control subjects. Results There was a significant difference in the P3 latency between cochlear implant users with poor speech recognition scores (G-) and their control group (CG) (p = 0.04), and between G- and cochlear implant users with good speech discrimination (G+) (p = 0.01). We found no significant difference in the P3 latency between the CG and G+. In this study, all G- patients had deafness due to meningitis, which suggests that higher auditory function was impaired too. Conclusion Post-lingual deaf adult cochlear implant users in the G- group had prolonged P3 latencies as compared with the CG and the cochlear implant users in the G+ group. The amplitudes were similar between patients and controls. All G- subjects were deaf due to meningitis. These findings suggest that meningitis may have deleterious effects not only on the peripheral auditory system but on the central auditory processing as well.


2020 ◽  
Vol 24 (04) ◽  
pp. e399-e406
Author(s):  
Joyce Miranda Santiago ◽  
Cyntia Barbosa Laureano Luiz ◽  
Michele Garcia ◽  
Daniela Gil

Abstract Introduction The auditory structures of the brainstem are involved in binaural interaction, which contributes to sound location and auditory figure-background perception. Objective To investigate the performance of young adults in the masking level difference (MLD) test, brainstem auditory-evoked potentials (BAEPs) with click stimulus, and frequency-following response (FFR), as well as to verify the correlation between the findings, considering the topographic origin of the components of these procedures. Methods A total of 20 female subjects between 18 and 30 years of age, with normal hearing and no complaints concerning central auditory processing underwent a basic audiological evaluation, as well as the MLD test, BAEP and FFR. Results The mean result on the MLD test was of 10.70 dB. There was a statistically significant difference in the absolute latencies of waves I, III and V in the BAEPs of the ears. A change in the FFR characterized by the absence of the C, E and F waves was noticed. There was a statistically significant difference in the positive correlation of wave V in the BAEPs with the MLD. There was a statistically significant difference in the positive correlation of the mean MLD and the V, A and F components of the FFR. Conclusion The mean MLD was adequate. In the BAEPs, we observed that the click stimulus transmission occurred faster in the right ear. The FFR showed absence of some components. The mean MLD correlated positively with the BAEPs and FFR.


Author(s):  
Eckhard Friauf ◽  
Elisa G. Krächan ◽  
Nicolas I.C. Müller

Auditory neurons in the mammalian brainstem are involved in several basic computation processes essential for survival; for example, sound localization. Differences in sound intensity between the two ears, so-called interaural level differences (ILDs), provide important spatial cues for localizing sound in the horizontal plane, particularly for animals with high-frequency hearing. The earliest center of ILD detection is the lateral superior olive (LSO), a prominent component of the superior olivary complex (SOC) in the medulla oblongata. LSO neurons receive input from both ears of excitatory and inhibitory nature and perform a subtraction-like process. The LSO has become a model system for studies addressing inhibitory synapses, map formation, and neural plasticity. This review aims to provide an overview of several facets of the LSO, focusing on its functional and anatomical organization, including development and plasticity. Understanding this important ILD detector is fundamental in multiple ways—among others, to analyze central auditory processing disorders and central presbyacusis.


2014 ◽  
Vol 25 (06) ◽  
pp. 529-540 ◽  
Author(s):  
Erin C. Schafer ◽  
Danielle Bryant ◽  
Katie Sanders ◽  
Nicole Baldus ◽  
Katherine Algier ◽  
...  

Background: Several recent investigations support the use of frequency modulation (FM) systems in children with normal hearing and auditory processing or listening disorders such as those diagnosed with auditory processing disorders, autism spectrum disorders, attention-deficit hyperactivity disorder, Friedreich ataxia, and dyslexia. The American Academy of Audiology (AAA) published suggested procedures, but these guidelines do not cite research evidence to support the validity of the recommended procedures for fitting and verifying nonoccluding open-ear FM systems on children with normal hearing. Documenting the validity of these fitting procedures is critical to maximize the potential FM-system benefit in the abovementioned populations of children with normal hearing and those with auditory-listening problems. Purpose: The primary goal of this investigation was to determine the validity of the AAA real-ear approach to fitting FM systems on children with normal hearing. The secondary goal of this study was to examine speech-recognition performance in noise and loudness ratings without and with FM systems in children with normal hearing sensitivity. Research Design: A two-group, cross-sectional design was used in the present study. Study Sample: Twenty-six typically functioning children, ages 5–12 yr, with normal hearing sensitivity participated in the study. Intervention: Participants used a nonoccluding open-ear FM receiver during laboratory-based testing. Data Collection and Analysis: Participants completed three laboratory tests: (1) real-ear measures, (2) speech recognition performance in noise, and (3) loudness ratings. Four real-ear measures were conducted to (1) verify that measured output met prescribed-gain targets across the 1000–4000 Hz frequency range for speech stimuli, (2) confirm that the FM-receiver volume did not exceed predicted uncomfortable loudness levels, and (3 and 4) measure changes to the real-ear unaided response when placing the FM receiver in the child’s ear. After completion of the fitting, speech recognition in noise at a –5 signal-to-noise ratio and loudness ratings at a +5 signal-to-noise ratio were measured in four conditions: (1) no FM system, (2) FM receiver on the right ear, (3) FM receiver on the left ear, and (4) bilateral FM system. Results: The results of this study suggested that the slightly modified AAA real-ear measurement procedures resulted in a valid fitting of one FM system on children with normal hearing. On average, prescriptive targets were met for 1000, 2000, 3000, and 4000 Hz within 3 dB, and maximum output of the FM system never exceeded and was significantly lower than predicted uncomfortable loudness levels for the children. There was a minimal change in the real-ear unaided response when the open-ear FM receiver was placed into the ear. Use of the FM system on one or both ears resulted in significantly better speech recognition in noise relative to a no-FM condition, and the unilateral and bilateral FM receivers resulted in a comfortably loud signal when listening in background noise. Conclusions: Real-ear measures are critical for obtaining an appropriate fit of an FM system on children with normal hearing.


2013 ◽  
Vol 24 (04) ◽  
pp. 274-292 ◽  
Author(s):  
Van Summers ◽  
Matthew J. Makashay ◽  
Sarah M. Theodoroff ◽  
Marjorie R. Leek

Background: It is widely believed that suprathreshold distortions in auditory processing contribute to the speech recognition deficits experienced by hearing-impaired (HI) listeners in noise. Damage to outer hair cells and attendant reductions in peripheral compression and frequency selectivity may contribute to these deficits. In addition, reduced access to temporal fine structure (TFS) information in the speech waveform may play a role. Purpose: To examine how measures of peripheral compression, frequency selectivity, and TFS sensitivity relate to speech recognition performance by HI listeners. To determine whether distortions in processing reflected by these psychoacoustic measures are more closely associated with speech deficits in steady-state or modulated noise. Research Design: Normal-hearing (NH) and HI listeners were tested on tasks examining frequency selectivity (notched-noise task), peripheral compression (temporal masking curve task), and sensitivity to TFS information (frequency modulation [FM] detection task) in the presence of random amplitude modulation. Performance was tested at 500, 1000, 2000, and 4000 Hz at several presentation levels. The same listeners were tested on sentence recognition in steady-state and modulated noise at several signal-to-noise ratios. Study Sample: Ten NH and 18 HI listeners were tested. NH listeners ranged in age from 36 to 80 yr (M = 57.6). For HI listeners, ages ranged from 58 to 87 yr (M = 71.8). Results: Scores on the FM detection task at 1 and 2 kHz were significantly correlated with speech scores in both noise conditions. Frequency selectivity and compression measures were not as clearly associated with speech performance. Speech Intelligibility Index (SII) analyses indicated only small differences in speech audibility across subjects for each signal-to-noise ratio (SNR) condition that would predict differences in speech scores no greater than 10% at a given SNR. Actual speech scores varied by as much as 80% across subjects. Conclusions: The results suggest that distorted processing of audible speech cues was a primary factor accounting for differences in speech scores across subjects and that reduced ability to use TFS cues may be an important component of this distortion. The influence of TFS cues on speech scores was comparable in steady-state and modulated noise. Speech recognition was not related to audibility, represented by the SII, once high-frequency sensitivity differences across subjects (beginning at 5 kHz) were removed statistically. This might indicate that high-frequency hearing loss is associated with distortions in processing in lower-frequency regions.


2008 ◽  
Vol 19 (05) ◽  
pp. 377-391 ◽  
Author(s):  
Sharon Cameron ◽  
Harvey Dillon

Background: The Listening in Spatialized Noise—Sentences test (LISN-S®) is a revised version of the Listening in Spatialized Noise (Continuous Discourse) test (LISN®; Cameron et al, 2006a). The software produces a three-dimensional auditory environment under headphones and was developed to assess auditory stream segregation skills in children. A simple repetition response protocol is utilized to determine speech reception thresholds (SRTs) for sentences presented from 0° azimuth in competing speech. The competing speech is manipulated with respect to its location in auditory space (0° vs. + and −90° azimuth) and the vocal quality of the speaker(s) (same as, or different to, the speaker of the target stimulus). Performance is measured as two SRT and three advantage measures. The advantage measures represent the benefit in dB gained when either talker, spatial, or both talker and spatial cues combined are incorporated in the maskers. Purpose: To document LISN-S performance in a group of nine children with suspected (central) auditory processing disorder ([C]APD), who presented with difficulties hearing in the classroom in the absence of any routine audiological or language, learning or attention deficits to explain such a difficulty (SusCAPD group). The study also aimed to research the effect of higher-order deficits on LISN-S performance in a group of 11 children with a range of documented learning or attention disorders (LD Group). Correlation between performance on the LISN-S and a traditional (C)APD test battery was also compared. Research Design: In a descriptive design, SusCAPD and LD group performance on the LISN-S was compared to published normative data from 70 age-matched controls. A correlational design was used to compare performance on the various tests in the traditional (C)APD battery to the SRT and advantage measures of the LISN-S. Results: There were no significant differences between the SusCAPD, LD, or control groups on the conditions of the LISN-S where both the target and maskers emanated from 0° azimuth (low-cue SRT, p = 0.978; talker advantage, p = 0.307). However, there were significant differences between groups on the performance measures where the maskers were separated from the target by + and −90°. Post hoc tests revealed that there were no significant differences between the LD group and controls on any of these measures. There were, however, significant differences between the SusCAPD group and the controls on all the conditions where the maskers were spatially separated from the target (high-cue SRT, p = 0.001; spatial advantage, p < 0.0001; total advantage, p < 0.0001). The LISN-S did not correlate significantly with any test in the traditional test battery, nor were the nonspatial and spatial performance measures of the LISN-S correlated. Conclusions: The study supports the hypothesis that a high proportion of children with suspected (C)APD have a deficit in the mechanisms that normally use the spatial distribution of sources to suppress unwanted signals. The LISN-S is a potentially valuable assessment tool for assessing auditory stream segregation deficits, and is sensitive in differentiating various forms of auditory streaming.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Min Zhang ◽  
Rachel N Denison ◽  
Denis G Pelli ◽  
Thuy Tien C Le ◽  
Antje Ihlefeld

AbstractSensory cortical mechanisms combine auditory or visual features into perceived objects. This is difficult in noisy or cluttered environments. Knowing that individuals vary greatly in their susceptibility to clutter, we wondered whether there might be a relation between an individual’s auditory and visual susceptibilities to clutter. In auditory masking, background sound makes spoken words unrecognizable. When masking arises due to interference at central auditory processing stages, beyond the cochlea, it is called informational masking. A strikingly similar phenomenon in vision, called visual crowding, occurs when nearby clutter makes a target object unrecognizable, despite being resolved at the retina. We here compare susceptibilities to auditory informational masking and visual crowding in the same participants. Surprisingly, across participants, we find a negative correlation (R = –0.7) between susceptibility to informational masking and crowding: Participants who have low susceptibility to auditory clutter tend to have high susceptibility to visual clutter, and vice versa. This reveals a tradeoff in the brain between auditory and visual processing.


Sign in / Sign up

Export Citation Format

Share Document