scholarly journals Recognition of post-learning alteration of hippocampal ripples by convolutional neural network differs in the wild-type and AD mice

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sheng-Yi Hsu ◽  
Bartosz Jura ◽  
Mau-Hsiang Shih ◽  
Pierre Meyrand ◽  
Feng-Sheng Tsai ◽  
...  

AbstractEvidence indicates that sharp-wave ripples (SWRs) are primary network events supporting memory processes. However, some studies demonstrate that even after disruption of awake SWRs the animal can still learn spatial task or that SWRs may be not necessary to establish a cognitive map of the environment. Moreover, we have found recently that despite a deficit of sleep SWRs the APP/PS1 mice, a model of Alzheimer’s disease, show undisturbed spatial reference memory. Searching for a learning-related alteration of SWRs that could account for the efficiency of memory in these mice we use convolutional neural networks (CNN) to discriminate pre- and post-learning 256 ms samples of LFP signals, containing individual SWRs. We found that the fraction of samples that were correctly recognized by CNN in majority of discrimination sessions was equal to ~ 50% in the wild-type (WT) and only 14% in APP/PS1 mice. Moreover, removing signals generated in a close vicinity of SWRs significantly diminished the number of such highly recognizable samples in the WT but not in APP/PS1 group. These results indicate that in WT animals a large subset of SWRs and signals generated in their proximity may contain learning-related information whereas such information seem to be limited in the AD mice.

Hippocampus ◽  
2004 ◽  
Vol 14 (2) ◽  
pp. 216-223 ◽  
Author(s):  
W.B. Schmitt ◽  
R.M.J. Deacon ◽  
D. Reisel ◽  
R. Sprengel ◽  
P.H. Seeburg ◽  
...  

2019 ◽  
Vol 1704 ◽  
pp. 16-25 ◽  
Author(s):  
Motahareh Rouhi Ardeshiri ◽  
Narges Hosseinmardi ◽  
Esmaeil Akbari

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Yanhua Zhao ◽  
Lili Huang ◽  
Huan Xu ◽  
Guangxi Wu ◽  
Mengyi Zhu ◽  
...  

Postoperative cognitive dysfunction (POCD) increases morbidity and mortality after surgery. But the underlying mechanism is not clear yet. While age is now accepted as the top one risk factor for POCD, results from studies investigating postoperative cognitive functions in adults have been controversial, and data about the very young adult individuals are lacking. The present study investigated the spatial reference memory, IL-1β, IL-6, and microglia activation changes in the hippocampus in 2-month-old mice after anesthesia and surgery. We found that hippocampal IL-1βand IL-6 increased at 6 hours after surgery. Microglia were profoundly activated in the hippocampus 6 to 24 hours after surgery. However, no significant behavior changes were found in these mice. These results indicate that although anesthesia and surgery led to neuroinflammation, the latter was insufficient to impair the spatial reference memory of young adult mice.


2019 ◽  
Author(s):  
Zhanqiang Zhao ◽  
Bing Li ◽  
Yuqing Wu ◽  
Xujun Chen ◽  
Yan Guo ◽  
...  

Abstract Background Ketamine has been reported to cause neonatal neurotoxicity in a variety of developing animal models. Various studies have been conducted to study the mechanism of neurotoxicity for general anesthetic use during the neonatal period. Previous experiments have suggested that developmentally generated granule neurons in the hippocampus dentate gyrus (DG) supported hippocampus-dependent memory. Therefore, this study aimed to investigate whether ketamine affects the functional integration of developmentally generated granule neurons in the DG. For this purpose , the postnatal day 7 (PND-7) Sprague-Dawley (SD) rats were divided into the control group and the ketamine group (rats who received 4 injections of 40 mg/kg ketamine at 1 h intervals). To label dividing cells, BrdU was administered for three consecutive days after the ketamine explore; NeuN+/BrdU+ cells were observed by using immunofluorescence. To evaluate the developmentally generated granule neurons that support hippocampus-dependent memory, spatial reference memory was tested by using Morris Water Maze at 3 months old, after which the immunofluorescence was used to detect c-Fos expression in the NeuN + /BrdU + cells. The expression of caspase-3 was measured by western blot to detect the apoptosis in the hippocampal DG. Results The present results showed that the neonatal ketamine exposure did not influence the survival rate of developmentally generated granule neurons at 2 and 3 months old, but ketamine interfered with the integration of these neurons into the hippocampal DG neural circuits and caused a deficit in hippocampal-dependent spatial reference memory tasks. Conclusions In summary, these findings may promote more studies to investigate the neurotoxicity of ketamine in the developing brain.


Sign in / Sign up

Export Citation Format

Share Document