scholarly journals Neuroinflammation Induced by Surgery Does Not Impair the Reference Memory of Young Adult Mice

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Yanhua Zhao ◽  
Lili Huang ◽  
Huan Xu ◽  
Guangxi Wu ◽  
Mengyi Zhu ◽  
...  

Postoperative cognitive dysfunction (POCD) increases morbidity and mortality after surgery. But the underlying mechanism is not clear yet. While age is now accepted as the top one risk factor for POCD, results from studies investigating postoperative cognitive functions in adults have been controversial, and data about the very young adult individuals are lacking. The present study investigated the spatial reference memory, IL-1β, IL-6, and microglia activation changes in the hippocampus in 2-month-old mice after anesthesia and surgery. We found that hippocampal IL-1βand IL-6 increased at 6 hours after surgery. Microglia were profoundly activated in the hippocampus 6 to 24 hours after surgery. However, no significant behavior changes were found in these mice. These results indicate that although anesthesia and surgery led to neuroinflammation, the latter was insufficient to impair the spatial reference memory of young adult mice.

2021 ◽  
Vol 15 ◽  
Author(s):  
Guohua Li ◽  
Yu Wang ◽  
Fang Cao ◽  
Dawei Wang ◽  
Limin Zhou ◽  
...  

Sevoflurane (SEVO) is a highly fluorinated methyl isopropyl ether used as an inhalational anesthetic for general anesthesia. Previous studies have shown that SEVO may induce impaired memory and recognition ability and may be associated with neurodegenerative disease, e.g., Alzheimer’s disease (AD). However, the underlying mechanism remains unknown. Here, we used a mouse AD model, APP/PS1, to study the effects of SEVO on neurodegeneration occurring in AD. We found that SEVO exposure significantly impaired the spatial reference memory, sensorimotor, and cognitive function of the mice. Mechanistically, we found that SEVO induced formation of NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome and its downstream caspase 1-mediated production of IL-1β and IL-18, which subsequently deactivated brain-derived neurotrophic factor (BDNF) to promote neurodegeneration. Together, these data suggest that NLRP3 inflammasome is essential for SEVO-induced AD.


Hippocampus ◽  
2004 ◽  
Vol 14 (2) ◽  
pp. 216-223 ◽  
Author(s):  
W.B. Schmitt ◽  
R.M.J. Deacon ◽  
D. Reisel ◽  
R. Sprengel ◽  
P.H. Seeburg ◽  
...  

2019 ◽  
Vol 1704 ◽  
pp. 16-25 ◽  
Author(s):  
Motahareh Rouhi Ardeshiri ◽  
Narges Hosseinmardi ◽  
Esmaeil Akbari

2020 ◽  
Vol 35 (9) ◽  
pp. 1751-1764 ◽  
Author(s):  
Christopher J Chermside‐Scabbo ◽  
Taylor L Harris ◽  
Michael D Brodt ◽  
Ingrid Braenne ◽  
Bo Zhang ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-8 ◽  
Author(s):  
Xiaoxin Zhou ◽  
Jian Lu ◽  
Tong Wu ◽  
Xuliang Jiang ◽  
Weitian Tian ◽  
...  

Postoperative cognitive dysfunction increases mortality and morbidity in perioperative patients. Numerous studies have demonstrated that multiple surgery/anesthesia during the neurodevelopmental period affects cognitive function, whereas a single anesthesia/surgery rarely causes cognitive dysfunction in adults. However, whether adults who undergo multiple anesthesia/surgery over a short period will experience cognitive dysfunction remains unclear. In this study, central nervous system inflammation and changes in cholinergic markers were investigated in adult mice subjected to multiple laparotomy procedures over a short period of time. The results showed that despite the increased expression of IL-6 and TNF-α in the hippocampus after multiple operations and the activation of microglia, multiple anesthesia/surgery did not cause a decline in cognitive function in adult mice. There were no changes in the cholinergic markers after multiple anesthesia/surgery.


1990 ◽  
Vol 258 (3) ◽  
pp. C429-C435 ◽  
Author(s):  
E. Zerba ◽  
T. E. Komorowski ◽  
J. A. Faulkner

We tested the hypotheses that 1) muscles of old mice are more susceptible to injury than muscles of young and adult mice, and 2) secondary or delayed onset injury results from free radical damage. Extensor digitorum longus muscles were injured in situ by lengthening contractions. Injury was assessed by measurement of maximum isometric tetanic force (Po) expressed as a percentage of the control value and by morphological damage. Mice were treated with a free radical scavenger, polyethylene glycol-superoxide dismutase (PEG-SOD). Three days postinjury, the Po of 44% for muscles of nontreated old mice was significantly lower than the Po of 58 and 61% for those of young and adult mice. In each group, the secondary injury at 3 days was alleviated by treatment with PEG-SOD. For treated muscles of young, adult, and old mice, values for Po were 88, 80, and 70%, respectively. We conclude that muscles of old mice are more susceptible to injury than muscles of young or adult mice and that free radicals contribute to the secondary or delayed onset injury.


Sign in / Sign up

Export Citation Format

Share Document