scholarly journals Non-centrosymmetric superconductor Th$$_4$$Be$$_{{33}}$$Pt$$_{{16}}$$ and heavy-fermion U$$_4$$Be$$_{{33}}$$Pt$$_{{16}}$$ cage compounds

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
P. Koželj ◽  
M. Juckel ◽  
A. Amon ◽  
Yu. Prots ◽  
A. Ormeci ◽  
...  

AbstractUnconventional superconductivity in non-centrosymmetric superconductors has attracted a considerable amount of attention. While several lanthanide-based materials have been reported previously, the number of actinide-based systems remains small. In this work, we present the discovery of a novel cubic complex non-centrosymmetric superconductor $${\text {Th}}_4{\text {Be}}_{{33}}{\text {Pt}}_{{16}}$$ Th 4 Be 33 Pt 16 ($$I{\bar{4}}3d$$ I 4 ¯ 3 d space group). This intermetallic cage compound displays superconductivity below $$T_{\text {c}} = 0.90 \pm 0.04$$ T c = 0.90 ± 0.04  K, as evidenced by specific heat and resistivity data. $${\text {Th}}_4{\text {Be}}_{{33}}{\text {Pt}}_{{16}}$$ Th 4 Be 33 Pt 16 is a type-II superconductor, which has an upper critical field $${\text {H}}_{{\text {c}}2} = 0.27$$ H c 2 = 0.27  T and a moderate Sommerfeld coefficient $$\gamma _{\text {n}} = 16.3 \pm 0.8$$ γ n = 16.3 ± 0.8  mJ $${\text {mol}}^{-1}_{\text {Th}}$$ mol Th - 1  $${\text {K}}^{-2}$$ K - 2 . A non-zero density of states at the Fermi level is evident from metallic behavior in the normal state, as well as from electronic band structure calculations. The isostructural $${\text {U}}_4{\text {Be}}_{{33}}{\text {Pt}}_{{16}}$$ U 4 Be 33 Pt 16 compound is a paramagnet with a moderately enhanced electronic mass, as indicated by the electronic specific heat coefficient $$\gamma _{\text {n}} = 200$$ γ n = 200  mJ $${\text {mol}}^{-1}_{\text {U}}$$ mol U - 1  $${\text {K}}^{-2}$$ K - 2 and Kadowaki–Woods ratio $$A/\gamma ^2 = 1.1 \times 10^{-5}$$ A / γ 2 = 1.1 × 10 - 5  $$\upmu $$ μ  $$\Omega $$ Ω  cm $${\text {K}}^2$$ K 2 $${\text {mol}}_{\text {U}}^2$$ mol U 2  (mJ)$$^{-2}$$ - 2 . Both $${\text {Th}}_4{\text {Be}}_{{33}}{\text {Pt}}_{{16}}$$ Th 4 Be 33 Pt 16 and $${\text {U}}_4{\text {Be}}_{{33}}{\text {Pt}}_{{16}}$$ U 4 Be 33 Pt 16 are crystallographically complex, each hosting 212 atoms per unit cell.

Author(s):  
Khodja Djamila ◽  
Djaafri Tayeb ◽  
Djaafri Abdelkader ◽  
Bendjedid Aicha ◽  
Hamada Khelifa ◽  
...  

The investigations of the strain effects on magnetism, elasticity, electronic, optical and thermodynamic properties of PdVTe half-Heusler alloy are carried out using the most accurate methods to electronic band structure, i.e. the full-potential linearized augmented plane wave plus a local orbital (FP-LAPW + lo) approach. The analysis of the band structures and the density of states reveals the Half-metallic behavior with a small indirect band gap Eg of 0.51 eV around the Fermi level for the minority spin channels. The study of magnetic properties led to the predicted value of total magnetic moment µtot = 3µB, which nicely follows the Slater–Pauling rule µtot = Zt -18. Several optical properties are calculated for the first time and the predicted values are in line with the Penn model. It is shown from the imaginary part of the complex dielectric function that the investigated alloy is optically metallic. The variations of thermodynamic parameters calculated using the quasi-harmonic Debye model, accord well with the results predicted by the Debye theory. Moreover, the dynamical stability of the investigated alloy is computed by means of the phonon dispersion curves, the density of states, and the formation energies. Finally, the analysis of the strain effects reveals that PdVTe alloy preserves its ferromagnetic half metallic behavior, it remains mechanically stable, the ionic nature dominates the atomic bonding, and the thermodynamic and the optical properties keep the same features in a large interval of pressure.


2019 ◽  
Author(s):  
Helena M Ferreira ◽  
Elsa B Lopes ◽  
José F Malta ◽  
Luís M Ferreira ◽  
Maria H Casimiro ◽  
...  

Vaesite, a nickel chalcogenide with NiS2 formula, has been synthetized and studied by theoretical and experimental methods. NiS2 was prepared by solid-state reaction under vacuum and densified by hot-pressing, at different consolidation conditions. Dense single-phase pellets (relative densities >94%) were obtained, without significant lattice distortions for different hot-pressing conditions. The thermal stability of NiS2 was studied by thermogravimetric analysis. Both as-synthetized and hot-pressed NiS2 have a single phase nature, although some hot-pressed samples had traces of the sulfur deficient phase, Ni1-xS (<1%vol), due to the strong desulfurization at T > 340ºC. The electronic band structure and density of states were calculated by Density Functional Theory (DFT), indicating a metallic behavior. However, the electronic transport measurements showed p-type semiconductivity for bulk NiS2, verifying its characteristic behavior has a Mott insulator. The consolidation conditions strongly influence the electronic properties, with the best room-temperature Seebeck coefficient, electrical resistivity and power factor being 182µVK-1, 2257μΩm and 14.1µWK-2m-1, respectively, pointing this compound as a good starting point for a new family of thermoelectric materials.


1997 ◽  
Vol 468 ◽  
Author(s):  
T. Yamamoto ◽  
H. Katayama-Yoshtoa

ABSTRACTWe propose a new valence control method, the “codoping method (using both n- and p-type dopants at the same time)”, for the fabrication of low-resistivity p-type GaN crystals based on the ab-initio electronic band structure calculations. We have clarified that while doping of acceptor dopants, BeGa and MgGa, leads to destabilization of the ionic charge distributions in p-type GaN crystals, doping of Sica or ON give rise to p-type doped GaN with high doping levels due to a large decrease in the Madelung energy. The codoping of the n- and p-type dopants (the ratio of their concentrations is 1:2) leads to stabilization of the ionic charge distribution inp-type GaN crystals due to a decrease in the Madelung energy, to result in an increase in the net carrier densities.


MRS Advances ◽  
2018 ◽  
Vol 3 (6-7) ◽  
pp. 397-402 ◽  
Author(s):  
Lindsay Bassman ◽  
Pankaj Rajak ◽  
Rajiv K. Kalia ◽  
Aiichiro Nakano ◽  
Fei Sha ◽  
...  

ABSTRACTVertical hetero-structures made from stacked monolayers of transition metal dichalcogenides (TMDC) are promising candidates for next-generation optoelectronic and thermoelectric devices. Identification of optimal layered materials for these applications requires the calculation of several physical properties, including electronic band structure and thermal transport coefficients. However, exhaustive screening of the material structure space using ab initio calculations is currently outside the bounds of existing computational resources. Furthermore, the functional form of how the physical properties relate to the structure is unknown, making gradient-based optimization unsuitable. Here, we present a model based on the Bayesian optimization technique to optimize layered TMDC hetero-structures, performing a minimal number of structure calculations. We use the electronic band gap and thermoelectric figure of merit as representative physical properties for optimization. The electronic band structure calculations were performed within the Materials Project framework, while thermoelectric properties were computed with BoltzTraP. With high probability, the Bayesian optimization process is able to discover the optimal hetero-structure after evaluation of only ∼20% of all possible 3-layered structures. In addition, we have used a Gaussian regression model to predict not only the band gap but also the valence band maximum and conduction band minimum energies as a function of the momentum.


2012 ◽  
Vol 488-489 ◽  
pp. 129-132 ◽  
Author(s):  
C. Kanagaraj ◽  
Baskaran Natesan

We have performed detailed structural, electronic and magnetic properties of high - TC multiferroic CuO using first principles density functional theory. The total energy results revealed that AFM is the most stable magnetic ground state of CuO. The DOS and electronic band structure calculations show that in the absence of on-site Coulomb interaction (U), AFM structure of CuO heads to a metallic state. However, upon incorporating U in the calculations, a band gap of 1.2 eV is recovered. Furthermore, the Born effective charges calculated on Cu does not show any anomalous character.This suggests that the polarization seen in CuO could be attributed to the spin induced AFM ordering effect.


Sign in / Sign up

Export Citation Format

Share Document