scholarly journals Energy recovery linac based fully coherent light source

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Z. T. Zhao ◽  
Z. Wang ◽  
C. Feng ◽  
S. Chen ◽  
L. Cao

AbstractEnergy recovery linac (ERL) holds great promise for generating high repetition-rate and high brightness electron beams. The application of ERL to drive a free-electron laser is currently limited by its low peak current. In this paper, we consider the combination of ERL with the recently proposed angular-dispersion induced microbunching technique to generate fully coherent radiation pulses with high average brightness and tunable pulse length. Start-to-end simulations have been performed based on a low energy ERL (600 MeV) for generating coherent EUV radiation pulses. The results indicate an average brightness over 1025 phs/s/mm2/mrad2/0.1%BW and average power of about 100 W at 13.5 nm or 20 W with the spectral resolution of about 0.5 meV with the proposed technique. Further extension of the proposed scheme to shorter wavelength based on an ERL complex is also discussed.

2021 ◽  
Author(s):  
Z. T. Zhao ◽  
Z. Wang ◽  
C. Feng ◽  
S. Chen ◽  
L. Cao

Abstract Energy recovery linac (ERL) holds great promise for generating high repetition-rate and high brightness electron beams. The application of ERL to drive a free-electron laser is currently limited by its low peak current. In this paper, we consider the combination of ERL with the recently proposed angler-dispersion induced microbunching technique to generate fully coherent radiation pulses with high average brightness and tunable pulse length. Start-to-end simulations have been performed based on a low energy ERL (600 MeV) for generating coherent EUV radiation pulses. The results indicate an average brightness over 1025 phs/s/mm2/mrad2/0.1%BW and average power of about 100 W at 13.5 nm or 20 W with the spectral resolution of about 0.5 meV with the proposed technique. Further extension of the proposed scheme to shorter wavelength based on an ERL complex is also discussed.


2020 ◽  
Vol 77 (5) ◽  
pp. 337-343
Author(s):  
Ji-Gwang Hwang ◽  
Michael Abo-Bakr ◽  
Aleksandr Matveenko ◽  
Georgios Kourkafas ◽  
Thorsten Kamps

Abstract Over the past decades, many accelerator laboratories have put much effort into the development of compact energy-recovery linac (ERL) demonstrators to verify various physical and technical aspects of the generation, acceleration, transport and energy recovery of high brightness and high average current electron beams in a superconducting radio-frequency (SRF) linear accelerator. Beyond these goals, the ERL demonstrator also offers unique opportunities to study novel schemes for THz and X-ray radiation generation. In this paper, we discuss feasible options for schemes generating THz and X-ray radiation at low-energy continuous-wave (CW) SRF ERL demonstrators such as the bERLinPro accelerator.


Author(s):  
I. Ben-Zvi ◽  
D. Barton ◽  
D. Beavis ◽  
M. Blaskiewicz ◽  
J.M. Brennan ◽  
...  

2011 ◽  
Vol 177 (3) ◽  
pp. 46-53
Author(s):  
Hokuto Iijima ◽  
Ryoji Nagai ◽  
Nobuyuki Nishimori ◽  
Ryoichi Hajima

2021 ◽  
Vol 11 (13) ◽  
pp. 6058
Author(s):  
Georgia Paraskaki ◽  
Sven Ackermann ◽  
Bart Faatz ◽  
Gianluca Geloni ◽  
Tino Lang ◽  
...  

Current FEL development efforts aim at improving the control of coherence at high repetition rate while keeping the wavelength tunability. Seeding schemes, like HGHG and EEHG, allow for the generation of fully coherent FEL pulses, but the powerful external seed laser required limits the repetition rate that can be achieved. In turn, this impacts the average brightness and the amount of statistics that experiments can do. In order to solve this issue, here we take a unique approach and discuss the use of one or more optical cavities to seed the electron bunches accelerated in a superconducting linac to modulate their energy. Like standard seeding schemes, the cavity is followed by a dispersive section, which manipulates the longitudinal phase space of the electron bunches, inducing longitudinal density modulations with high harmonic content that undergo the FEL process in an amplifier placed downstream. We will discuss technical requirements for implementing these setups and their operation range based on numerical simulations.


Author(s):  
S.L. Smith ◽  
N. Bliss ◽  
A.R. Goulden ◽  
D.J. Holder ◽  
P.A McIntosh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document