scholarly journals Water deficit changes the relationships between epidemiological traits of Cauliflower mosaic virus across diverse Arabidopsis thaliana accessions

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sandy E. Bergès ◽  
Denis Vile ◽  
Michel Yvon ◽  
Diane Masclef ◽  
Myriam Dauzat ◽  
...  

AbstractChanges in plant abiotic environments may alter plant virus epidemiological traits, but how such changes actually affect their quantitative relationships is poorly understood. Here, we investigated the effects of water deficit on Cauliflower mosaic virus (CaMV) traits (virulence, accumulation, and vectored-transmission rate) in 24 natural Arabidopsis thaliana accessions grown under strictly controlled environmental conditions. CaMV virulence increased significantly in response to water deficit during vegetative growth in all A. thaliana accessions, while viral transmission by aphids and within-host accumulation were significantly altered in only a few. Under well-watered conditions, CaMV accumulation was correlated positively with CaMV transmission by aphids, while under water deficit, this relationship was reversed. Hence, under water deficit, high CaMV accumulation did not predispose to increased horizontal transmission. No other significant relationship between viral traits could be detected. Across accessions, significant relationships between climate at collection sites and viral traits were detected but require further investigation. Interactions between epidemiological traits and their alteration under abiotic stresses must be accounted for when modelling plant virus epidemiology under scenarios of climate change.

2020 ◽  
Vol 16 (5) ◽  
pp. e1008557
Author(s):  
Sandy E. Bergès ◽  
François Vasseur ◽  
Alexis Bediée ◽  
Gaëlle Rolland ◽  
Diane Masclef ◽  
...  

2010 ◽  
Vol 365 (1548) ◽  
pp. 1983-1995 ◽  
Author(s):  
Israel Pagán ◽  
Aurora Fraile ◽  
Elena Fernandez-Fueyo ◽  
Nuria Montes ◽  
Carlos Alonso-Blanco ◽  
...  

Understanding plant–virus coevolution requires wild systems in which there is no human manipulation of either host or virus. To develop such a system, we analysed virus infection in six wild populations of Arabidopsis thaliana in Central Spain. The incidence of five virus species with different life-styles was monitored during four years, and this was analysed in relation to the demography of the host populations. Total virus incidence reached 70 per cent, which suggests a role of virus infection in the population structure and dynamics of the host, under the assumption of a host fitness cost caused by the infection. Maximum incidence occurred at early growth stages, and co-infection with different viruses was frequent, two factors often resulting in increased virulence. Experimental infections under controlled conditions with two isolates of the most prevalent viruses, cauliflower mosaic virus and cucumber mosaic virus, showed that there is genetic variation for virus accumulation, although this depended on the interaction between host and virus genotypes. Comparison of Q ST -based genetic differentiations between both host populations with F ST genetic differentiation based on putatively neutral markers suggests different selection dynamics for resistance against different virus species or genotypes. Together, these results are compatible with a hypothesis of plant–virus coevolution.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lucie Slawinski ◽  
Abir Israel ◽  
Caroline Artault ◽  
Florence Thibault ◽  
Rossitza Atanassova ◽  
...  

Drought is one of the main abiotic stresses, which affects plant growth, development, and crop yield. Plant response to drought implies carbon allocation to sink organs and sugar partitioning between different cell compartments, and thereby requires the involvement of sugar transporters (SUTs). Among them, the early response to dehydration six-like (ESL), with 19 members in Arabidopsis thaliana, form the largest subfamily of monosaccharide transporters (MSTs) still poorly characterized. A common feature of these genes is their involvement in plant response to abiotic stresses, including water deficit. In this context, we carried out morphological and physiological phenotyping of A. thaliana plants grown under well-watered (WW) and water-deprived (WD) conditions, together with the expression profiling of 17 AtESL genes in rosette leaves. The drought responsiveness of 12 ESL genes, 4 upregulated and 8 downregulated, was correlated to different water statuses of rosette leaves. The differential expression of each of the tandem duplicated AtESL genes in response to water stress is in favor of their plausible functional diversity. Furthermore, transfer DNA (T-DNA) insertional mutants for each of the four upregulated ESLs in response to water deprivation were identified and characterized under WW and WD conditions. To gain insights into global sugar exchanges between vacuole and cytosol under water deficit, the gene expression of other vacuolar SUTs and invertases (AtTMT, AtSUC, AtSWEET, and AtβFRUCT) was analyzed and discussed.


2002 ◽  
Vol 92 (2) ◽  
pp. 190-196 ◽  
Author(s):  
K. Agama ◽  
S. Beach ◽  
J. Schoelz ◽  
S. M. Leisner

Arabidopsis thaliana ecotypes vary in their responses to viruses. In this study, we analyzed the variation in response of A. thaliana ecotype Tsu-0 to Cauliflower mosaic virus (CaMV). This ecotype was previously reported to be resistant to two CaMV isolates (CM1841 and CM4-184), but susceptible to W260. In this study, we show that Tsu-0 is resistant to four additional CaMV isolates. CaMV propagated within the rosette leaves of Tsu-0 plants, but did not appear to spread systemically into the inflorescence. However, virus viability in rosette leaves of Tsu-0 plants apparently was not compromised because infectious CaMV could be recovered from these organs. W260 overcomes Tsu-0 resistance by a passive mechanism (i.e., this virus avoids activating plant defenses). The portion of the viral genome responsible for W260 resistance breakage was mapped to the 5′ third of gene VI, which we have termed RBR-1. This region is also responsible for controlling the ability of CaMV to infect different types of solanaceous plants. Hence, the pathways by which plants of different families interact with CaMV may be conserved through evolution.


1986 ◽  
Vol 5 (4) ◽  
pp. 641-646 ◽  
Author(s):  
Nigel Grimsley ◽  
Thomas Hohn ◽  
Barbara Hohn

2013 ◽  
Vol 63 ◽  
pp. 159-169 ◽  
Author(s):  
Marylou Machingura ◽  
Aissatou Sidibe ◽  
Andrew J. Wood ◽  
Stephen D. Ebbs

2000 ◽  
Vol 13 (5) ◽  
pp. 512-519 ◽  
Author(s):  
Anton S. Callaway ◽  
Zhong Huang ◽  
Stephen H. Howell

A novel genetic screen was used to identify host factors in Arabidopsis thaliana that suppress mutations in the Cauliflower mosaic virus (CaMV) movement protein gene (gene I). A series of small mutations was made in gene I and the mutations were tested for their suitability in a suppressor screen. The first round of screening yielded only revertants or second-site mutations in gene I. A derivative of one of the second-site mutant viruses (N7) that was delayed in symptom production was used in a second round of screening for suppressor plants that accelerated symptom production. Two candidate suppressor plants were found that accelerated by 1 to 4 days the first appearance of symptoms caused by the mutant viruses. One of the suppressors (5-2), called asc1 (acceleration of symptoms by CaMV N7), was mapped to chromosome 1. Two additional loci that differentially affect N7 virus susceptibility in the parental Columbia and Ler ecotypes were mapped to chromosomes 3 and 4 by quantitative trait locus (QTL) analysis.


Sign in / Sign up

Export Citation Format

Share Document