scholarly journals The flow of the Berry curvature vector field

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Ondřej Stejskal ◽  
Martin Veis ◽  
Jaroslav Hamrle

AbstractThe concept of Berry phase and Berry curvature has become ubiquitous in solid state physics as it relates to variety of phenomena, such as topological insulators, polarization, and various Hall effects. It is well known that large Berry curvatures arise from close proximity of hybridizing bands, however, the vectorial nature of the Berry curvature is not utilized in current research. On bulk bcc Fe, we demonstrate the flow of the Berry curvature vector field which features not only monopoles but also higher dimensional structures with its own topological features. They can provide a novel unique view on the electronic structure in all three dimensions. This knowledge is also used to quantify particular contributions to the intrinsic anomalous Hall effect in a simple analytical form.

2021 ◽  
Author(s):  
Ondřej Stejskal ◽  
Martin Veis ◽  
Jaroslav Hamrle

Abstract The concept of Berry phase and Berry curvature has become ubiquitous in solid state physics as it relates to variety of phenomena, such as topological insulators, polarization, and various Hall effects. It is well known that large Berry curvatures arise from close proximity of hybridiz-ing bands, however, the vectorial nature of the Berry curvature is not utilized in current research. On bulk bcc Fe, we demonstrate the flow of the Berry curvature vector field which features not only monopoles but also higher dimensional structures with its own topological features. They can provide a novel unique view on the electronic structure in all three dimensions. This knowledge is also used to quantify particular contributions to the intrinsic anomalous Hall effect in a simple analytical form.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Fei Wang ◽  
Xuepeng Wang ◽  
Yi-Fan Zhao ◽  
Di Xiao ◽  
Ling-Jie Zhou ◽  
...  

AbstractThe Berry phase picture provides important insights into the electronic properties of condensed matter systems. The intrinsic anomalous Hall (AH) effect can be understood as the consequence of non-zero Berry curvature in momentum space. Here, we fabricate TI/magnetic TI heterostructures and find that the sign of the AH effect in the magnetic TI layer can be changed from being positive to negative with increasing the thickness of the top TI layer. Our first-principles calculations show that the built-in electric fields at the TI/magnetic TI interface influence the band structure of the magnetic TI layer, and thus lead to a reconstruction of the Berry curvature in the heterostructure samples. Based on the interface-induced AH effect with a negative sign in TI/V-doped TI bilayer structures, we create an artificial “topological Hall effect”-like feature in the Hall trace of the V-doped TI/TI/Cr-doped TI sandwich heterostructures. Our study provides a new route to create the Berry curvature change in magnetic topological materials that may lead to potential technological applications.


2019 ◽  
Vol 12 (07) ◽  
pp. 2050012
Author(s):  
Alexander Balandin

An inversion of the weighted vector ray transform is performed jointly with the inversion of the scalar ray transform for the weighted function [Formula: see text]. Initially, the ray transform of the basis vector functions for the vector field [Formula: see text] is evaluated in an analytical form and then the inversion problem is reduced by the method of the least squares to a linear system of equations.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
D. Boldrin ◽  
A. S. Wills

Geometrically frustrated conducting magnets display extraordinarily large anomalous Hall effects (AHEs) that could be used to realise materials required for the emerging field of spintronics. While the intrinsic Berry phase developed in collinear ferromagnets is well explained through the effects of spin-orbit interactions within the Karplus and Luttinger model, its origins in frustrated magnets are not. The direct space mechanism based on spin chirality that was originally applied to the pyrochlore Nd2Mo2O7appears unsatisfactory. Recently, an orbital description based on the Aharonov-Bohm effect has been proposed and applied to both the ferromagnetic pyrochlores Nd2Mo2O7and Pr2Ir2O7; the first of which features long-ranged magnetic order while the latter is a chiral spin liquid. Two further examples of geometrically frustrated conducting magnets are presented in this paper—the kagome-like Fe3Sn2and the triangular PdCrO2. These possess very different electronic structures to the 3-dimensional heavy-metal pyrochlores and provide new opportunities to explore the different origins of the AHE. This paper summarises the experimental findings in these materials in an attempt to unite the conflicting theoretical arguments.


2021 ◽  
pp. 2006301
Author(s):  
Satya N. Guin ◽  
Qiunan Xu ◽  
Nitesh Kumar ◽  
Hsiang‐Hsi Kung ◽  
Sydney Dufresne ◽  
...  

Nanoscale ◽  
2021 ◽  
Author(s):  
Ning Jiang ◽  
Bo Yang ◽  
Yulong Bai ◽  
Yaoxiang Jiang ◽  
Shifeng Zhao

Both surface and interface scattering induced a sign reversal of anomalous Hall effects (AHE) in a few heterostructures. The sign reversal exiting in a single-substance can clarify the role of...


2001 ◽  
Vol 435 ◽  
pp. 103-144 ◽  
Author(s):  
M. RIEUTORD ◽  
B. GEORGEOT ◽  
L. VALDETTARO

We investigate the asymptotic properties of inertial modes confined in a spherical shell when viscosity tends to zero. We first consider the mapping made by the characteristics of the hyperbolic equation (Poincaré's equation) satisfied by inviscid solutions. Characteristics are straight lines in a meridional section of the shell, and the mapping shows that, generically, these lines converge towards a periodic orbit which acts like an attractor (the associated Lyapunov exponent is always negative or zero). We show that these attractors exist in bands of frequencies the size of which decreases with the number of reflection points of the attractor. At the bounding frequencies the associated Lyapunov exponent is generically either zero or minus infinity. We further show that for a given frequency the number of coexisting attractors is finite.We then examine the relation between this characteristic path and eigensolutions of the inviscid problem and show that in a purely two-dimensional problem, convergence towards an attractor means that the associated velocity field is not square-integrable. We give arguments which generalize this result to three dimensions. Then, using a sphere immersed in a fluid filling the whole space, we study the critical latitude singularity and show that the velocity field diverges as 1/√d, d being the distance to the characteristic grazing the inner sphere.We then consider the viscous problem and show how viscosity transforms singularities into internal shear layers which in general reveal an attractor expected at the eigenfrequency of the mode. Investigating the structure of these shear layers, we find that they are nested layers, the thinnest and most internal layer scaling with E1/3, E being the Ekman number; for this latter layer, we give its analytical form and show its similarity to vertical 1/3-shear layers of steady flows. Using an inertial wave packet travelling around an attractor, we give a lower bound on the thickness of shear layers and show how eigenfrequencies can be computed in principle. Finally, we show that as viscosity decreases, eigenfrequencies tend towards a set of values which is not dense in [0, 2Ω], contrary to the case of the full sphere (Ω is the angular velocity of the system).Hence, our geometrical approach opens the possibility of describing the eigenmodes and eigenvalues for astrophysical/geophysical Ekman numbers (10−10–10−20), which are out of reach numerically, and this for a wide class of containers.


2021 ◽  
Author(s):  
Oliver Dowinton ◽  
Mohammad Bahramy

Abstract Orbital angular momentum (OAM) plays a central role in regulating the magnetic state of electrons in non-periodic systems such as atoms and molecules. In solids, on the other hand, OAM is usually quenched by the crystal field, and thus, has a negligible effect on magnetisation. Accordingly, it is generally neglected in discussions around band topology such as Berry curvature (BC) and intrinsic anomalous Hall conductivity (AHC). Here, we present a theoretical framework demonstrating that crystalline OAM can be directionally unquenched in transition metal oxides via energetic proximity of the conducting d electrons to the local magnetic moments. We show that this leads to `composite' Fermi-pockets with topologically non-trivial OAM textures. This enables a giant Berry curvature with an intrinsic non-monotonic AHC, even in collinearly-ordered spin states. We use this model to explain the origin of the giant AHC observed in the forced-ferromagnetic state of EuTiO3 and propose it as a prototype for OAM driven AHC.


2013 ◽  
Vol 46 (4) ◽  
pp. 1211-1215 ◽  
Author(s):  
Sascha B. Maisel ◽  
Nils Schindzielorz ◽  
Stefan Müller ◽  
Harald Reichert ◽  
Alexei Bosak

Solid state physics is built on the concept of reciprocal space. The physics of any given periodic crystal is fully defined within the Wigner–Seitz cell in reciprocal space, also known as the first Brillouin zone. It is a purely symmetry-based concept and usually does not have any eye-catching signature in the experimental data, in contrast with some other geometrical constructions like the Fermi surface. However, the particular shape of the Fermi surface of nickel allowed the visualization of the system of edges (skeleton) of the Wigner–Seitz cell of the face-centred cubic lattice in reciprocal space in three dimensions by the diffuse scattering of X-rays from Ni1−xWx(x= 0.03, 0.05, 0.08) single crystals. Employing a cluster-expansion method with first-principles input, it is possible to show that the observed scattering is inherent to the given nickel alloys and the crystal structures they form. This peculiar feature can be understood by considering the shape of the Fermi surface of pure nickel.


Sign in / Sign up

Export Citation Format

Share Document