scholarly journals Correlative imaging of ferroelectric domain walls

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Iaroslav Gaponenko ◽  
Salia Cherifi-Hertel ◽  
Ulises Acevedo-Salas ◽  
Nazanin Bassiri-Gharb ◽  
Patrycja Paruch

AbstractThe wealth of properties in functional materials at the nanoscale has attracted tremendous interest over the last decades, spurring the development of ever more precise and ingenious characterization techniques. In ferroelectrics, for instance, scanning probe microscopy based techniques have been used in conjunction with advanced optical methods to probe the structure and properties of nanoscale domain walls, revealing complex behaviours such as chirality, electronic conduction or localised modulation of mechanical response. However, due to the different nature of the characterization methods, only limited and indirect correlation has been achieved between them, even when the same spatial areas were probed. Here, we propose a fast and unbiased analysis method for heterogeneous spatial data sets, enabling quantitative correlative multi-technique studies of functional materials. The method, based on a combination of data stacking, distortion correction, and machine learning, enables a precise mesoscale analysis. When applied to a data set containing scanning probe microscopy piezoresponse and second harmonic generation polarimetry measurements, our workflow reveals behaviours that could not be seen by usual manual analysis, and the origin of which is only explainable by using the quantitative correlation between the two data sets.

1994 ◽  
Author(s):  
Carlo Frediani ◽  
Maria Allegrini ◽  
Cesare Ascoli ◽  
Tullio Mariani

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Kento Kariya ◽  
Takeshi Yoshimura ◽  
Katsuya Ujimoto ◽  
Norifumi Fujimura

AbstractPolarisation domain structure is a microstructure specific to ferroelectrics and plays a role in their various fascinating characteristics. The piezoelectric properties of ferroelectrics are influenced by the domain wall contribution. This study provides a direct observation of the contribution of domain walls to the direct piezoelectric response of bismuth ferrite (BiFeO3) films, which have been widely studied as lead-free piezoelectrics. To achieve this purpose, we developed a scanning probe microscopy-based measurement technique, termed direct piezoelectric response microscopy (DPRM), to observe the domain structure of BiFeO3 films via the direct piezoelectric response. Quantitative analysis of the direct piezoelectric response obtained by DPRM, detailed analysis of the domain structure by conventional piezoelectric force microscopy, and microscopic characterisation of the direct piezoelectric properties of BiFeO3 films with different domain structures revealed that their direct piezoelectric response is enhanced by the walls between the domains of spontaneous polarisation in the same out-of-plane direction.


2021 ◽  
Vol 12 ◽  
pp. 878-901
Author(s):  
Ido Azuri ◽  
Irit Rosenhek-Goldian ◽  
Neta Regev-Rudzki ◽  
Georg Fantner ◽  
Sidney R Cohen

Progress in computing capabilities has enhanced science in many ways. In recent years, various branches of machine learning have been the key facilitators in forging new paths, ranging from categorizing big data to instrumental control, from materials design through image analysis. Deep learning has the ability to identify abstract characteristics embedded within a data set, subsequently using that association to categorize, identify, and isolate subsets of the data. Scanning probe microscopy measures multimodal surface properties, combining morphology with electronic, mechanical, and other characteristics. In this review, we focus on a subset of deep learning algorithms, that is, convolutional neural networks, and how it is transforming the acquisition and analysis of scanning probe data.


2011 ◽  
Vol 28 (4) ◽  
pp. 043402 ◽  
Author(s):  
Xiao-Gen Hu ◽  
Yu-He Li ◽  
Hao-Shan Lin ◽  
Dong-Sheng Wang ◽  
Xin Qi

Nanomaterials ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 940
Author(s):  
Maxim S. Ivanov ◽  
Vladimir A. Khomchenko ◽  
Maxim V. Silibin ◽  
Dmitry V. Karpinsky ◽  
Carsten Blawert ◽  
...  

In this work we demonstrate the role of grain boundaries and domain walls in the local transport properties of n- and p-doped bismuth ferrites, including the influence of these singularities on the space charge imbalance of the energy band structure. This is mainly due to the charge accumulation at domain walls, which is recognized as the main mechanism responsible for the electrical conductivity in polar thin films and single crystals, while there is an obvious gap in the understanding of the precise mechanism of conductivity in ferroelectric ceramics. The conductivity of the Bi0.95Ca0.05Fe1−xTixO3−δ (x = 0, 0.05, 0.1; δ = (0.05 − x)/2) samples was studied using a scanning probe microscopy approach at the nanoscale level as a function of bias voltage and chemical composition. The obtained results reveal a distinct correlation between electrical properties and the type of charged defects when the anion-deficient (x = 0) compound exhibits a three order of magnitude increase in conductivity as compared with the charge-balanced (x = 0.05) and cation-deficient (x = 0.1) samples, which is well described within the band diagram representation. The data provide an approach to control the transport properties of multiferroic bismuth ferrites through aliovalent chemical substitution.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Iaroslav Gaponenko ◽  
Philippe Tückmantel ◽  
Benedikt Ziegler ◽  
Guillaume Rapin ◽  
Manisha Chhikara ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document