scholarly journals 3D-printed NiFe-layered double hydroxide pyramid electrodes for enhanced electrocatalytic oxygen evolution reaction

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Jinhyuck Ahn ◽  
Yoo Sei Park ◽  
Sanghyeon Lee ◽  
Juchan Yang ◽  
Jaeyeon Pyo ◽  
...  

AbstractElectrochemical water splitting has been considered one of the most promising methods of hydrogen production, which does not cause environmental pollution or greenhouse gas emissions. Oxygen evolution reaction (OER) is a significant step for highly efficient water splitting because OER involves the four electron transfer, overcoming the associated energy barrier that demands a potential greater than that required by hydrogen evolution reaction. Therefore, an OER electrocatalyst with large surface area and high conductivity is needed to increase the OER activity. In this work, we demonstrated an effective strategy to produce a highly active three-dimensional (3D)-printed NiFe-layered double hydroxide (LDH) pyramid electrode for OER using a three-step method, which involves direct-ink-writing of a graphene pyramid array and electrodeposition of a copper conducive layer and NiFe-LDH electrocatalyst layer on printed pyramids. The 3D pyramid structures with NiFe-LDH electrocatalyst layers increased the surface area and the active sites of the electrode and improved the OER activity. The overpotential (η) and exchange current density (i0) of the NiFe-LDH pyramid electrode were further improved compared to that of the NiFe-LDH deposited Cu (NiFe-LDH/Cu) foil electrode with the same base area. The 3D-printed NiFe-LDH electrode also exhibited excellent durability without potential decay for 60 h. Our 3D printing strategy provides an effective approach for the fabrication of highly active, stable, and low-cost OER electrocatalyst electrodes.

2021 ◽  
Author(s):  
Zihao Liu ◽  
Shifeng Li ◽  
Fangfang Wang ◽  
Mingxia Li ◽  
Yonghong Ni

FeNi-layered double hydroxide (LDH) is thought to be an excellent electrocatalyst for oxygen evolution reaction (OER), but it always shows extremely poor electrocatalytic activity toward hydrogen evolution reaction (HER) in...


Author(s):  
Kaiyao Wu ◽  
Fei Chu ◽  
Yuying Meng ◽  
Kaveh Edalati ◽  
Qingsheng Gao ◽  
...  

Transition metal-based amorphous alloys have attracted increasing attention as precious-metal-free electrocatalysts for oxygen evolution reaction (OER) of water splitting due to their high macro-conductivity and abundant surface active sites. However,...


2018 ◽  
Vol 6 (7) ◽  
pp. 3224-3230 ◽  
Author(s):  
Li-Ming Cao ◽  
Jia-Wei Wang ◽  
Di-Chang Zhong ◽  
Tong-Bu Lu

The development of readily available, highly efficient and stable electrocatalysts for the oxygen evolution reaction (OER) is extremely significant to facilitate water splitting for the generation of clean hydrogen energy.


2020 ◽  
Vol 10 (13) ◽  
pp. 4184-4190 ◽  
Author(s):  
Xiao-Peng Li ◽  
Wen-Kai Han ◽  
Kang Xiao ◽  
Ting Ouyang ◽  
Nan Li ◽  
...  

NiFe-layered double hydroxide (NiFe LDH), as an efficient oxygen evolution reaction (OER) electrocatalyst, has emerged as a promising electrocatalyst for catalyzing overall water splitting in alkaline electrolyte.


2021 ◽  
Author(s):  
Daojin Zhou ◽  
Pengsong Li ◽  
Xiao Lin ◽  
Adam McKinley ◽  
Yun Kuang ◽  
...  

Opportunities and challenges in tailoring layered double hydroxides and constructing them into superaerophobic nanoarray electrodes for an efficient oxygen evolution reaction


2018 ◽  
Vol 8 (15) ◽  
pp. 1703189 ◽  
Author(s):  
Yang Yang ◽  
Lianna Dang ◽  
Melinda J. Shearer ◽  
Hongyuan Sheng ◽  
Wenjie Li ◽  
...  

ACS Catalysis ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 6027-6032 ◽  
Author(s):  
Chunguang Kuai ◽  
Yan Zhang ◽  
Deyao Wu ◽  
Dimosthenis Sokaras ◽  
Linqin Mu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document