scholarly journals Estimation of stride-by-stride spatial gait parameters using inertial measurement unit attached to the shank with inverted pendulum model

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yufeng Mao ◽  
Taiki Ogata ◽  
Hiroki Ora ◽  
Naoto Tanaka ◽  
Yoshihiro Miyake

AbstractInertial measurement unit (IMU)-based gait analysis systems have become popular in clinical environments because of their low cost and quantitative measurement capability. When a shank is selected as the IMU mounting position, an inverted pendulum model (IPM) can accurately estimate its spatial gait parameters. However, the stride-by-stride estimation of gait parameters using one IMU on each shank and the IPMs has not been validated. This study validated a spatial gait parameter estimation method using a shank-based IMU system. Spatial parameters were estimated via the double integration of the linear acceleration transformed by the IMU orientation information. To reduce the integral drift error, an IPM, applied with a linear error model, was introduced at the mid-stance to estimate the update velocity. the gait data of 16 healthy participants that walked normally and slowly were used. The results were validated by comparison with those extracted from an optical motion-capture system; the results showed strong correlation ($$r>0.9$$ r > 0.9 ) and good agreement with the gait metrics (stride length, stride velocity, and shank vertical displacement). In addition, the biases of the stride length and stride velocity extracted using the motion capture system were smaller in the IPM than those in the previous method using the zero-velocity-update. The error variabilities of the gait metrics were smaller in the IPM than those in the previous method. These results indicated that the reconstructed shank trajectory achieved a greater accuracy and precision than that of previous methods. This was attributed to the IPM, which demonstrates that shank-based IMU systems with IPMs can accurately reflect many spatial gait parameters including stride velocity.

Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 2896
Author(s):  
Pratham Singh ◽  
Michael Esposito ◽  
Zach Barrons ◽  
Christian A. Clermont ◽  
John Wannop ◽  
...  

One possible modality to profile gait speed and stride length includes using wearable technologies. Wearable technology using global positioning system (GPS) receivers may not be a feasible means to measure gait speed. An alternative may include a local positioning system (LPS). Considering that LPS wearables are not good at determining gait events such as heel strikes, applying sensor fusion with an inertial measurement unit (IMU) may be beneficial. Speed and stride length determined from an ultrawide bandwidth LPS equipped with an IMU were compared to video motion capture (i.e., the “gold standard”) as the criterion standard. Ninety participants performed trials at three self-selected walk, run and sprint speeds. After processing location, speed and acceleration data from the measurement systems, speed between the last five meters and stride length in the last stride of the trial were analyzed. Small biases and strong positive intraclass correlations (0.9–1.0) between the LPS and “the gold standard” were found. The significance of the study is that the LPS can be a valid method to determine speed and stride length. Variability of speed and stride length can be reduced when exploring data processing methods that can better extract speed and stride length measurements.


2021 ◽  
Vol 10 (9) ◽  
pp. 1804
Author(s):  
Jorge Posada-Ordax ◽  
Julia Cosin-Matamoros ◽  
Marta Elena Losa-Iglesias ◽  
Ricardo Becerro-de-Bengoa-Vallejo ◽  
Laura Esteban-Gonzalo ◽  
...  

In recent years, interest in finding alternatives for the evaluation of mobility has increased. Inertial measurement units (IMUs) stand out for their portability, size, and low price. The objective of this study was to examine the accuracy and repeatability of a commercially available IMU under controlled conditions in healthy subjects. A total of 36 subjects, including 17 males and 19 females were analyzed with a Wiva Science IMU in a corridor test while walking for 10 m and in a threadmill at 1.6 km/h, 2.4 km/h, 3.2 km/h, 4 km/h, and 4.8 km/h for one minute. We found no difference when we compared the variables at 4 km/h and 4.8 km/h. However, we found greater differences and errors at 1.6 km/h, 2.4 km/h and 3.2 km/h, and the latter one (1.6 km/h) generated more error. The main conclusion is that the Wiva Science IMU is reliable at high speeds but loses reliability at low speeds.


2017 ◽  
Vol 2 (2) ◽  
pp. 251
Author(s):  
FX. Satriyo Dwi Nugroho

Visual digital documentation of traditional dance in Indonesia is still limited to photographs and videos recording. Motion capture technology has the potential to add more depth documenting traditional dances. This technology maps the position of the model (in this case the human body) and its motion in three dimensions. There are two popular ways in recording motion capture, using Vision Based Camera and Inertial measurement unit. Inertial Measurement Unit works by combining accelerometer and gyroscope to detect changes in the rotation axis relative lateral and angular. Those changes will be interpreted Arduino micro-controller platform as functions of motions that recorded as a motion capture data. Motion capture data that was obtained from traditional dance in Indonesia can be applied for many things such as education, standardization, documentation, and preservation of cultural assetsKeywords: digital documentatuion, motion capture, inertia measurement unit, angular relative, digital heritage. Abstrak Dokumentasi digital secara visual untuk tari tradisional di Indonesia masih terbatas pada perekaman secara fotografis dan videografis. Teknologi motion capture memiliki potensi untuk menambah kekayaan dokumentasi untuk tari tradisional. Teknologi ini memetakan posisi model (dalam hal ini tubuh manusia) dan pergerakannya secara 3 dimensi. Ada dua cara yang populer dalam perekaman motion capture, menggunakan Vision Based Camera dan Inertial measurement unit. Inertial Measurement Unit bekerja dengan menggabungkan accelerometer dan gyroscope untuk mendeteksi perubahan sumbu rotasi secara lateral dan angular relative. Perubahan ini yang oleh platform mikro-kontroler Arduino akan diterjemahkan sebagai fungsi gerakan yang nantinya akan direkam sebagai data motion capture. Data dokumentasi digital motion capture yang didapat dari perekaman gerak tari tradisional di Indonesia dapat diaplikasikan untuk banyak hal seperti edukasi, standarisasi, pembuatan animasi, game, dan pelestarian aset budaya. Kata kunci: dokumentasi digital, motion capture, inertia measurement unit, angular relative, pelestarian asset budaya


Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2983
Author(s):  
Marie Sapone ◽  
Pauline Martin ◽  
Khalil Ben Mansour ◽  
Henry Château ◽  
Frédéric Marin

The development of on-board sensors, such as inertial measurement units (IMU), has made it possible to develop new methods for analyzing horse locomotion to detect lameness. The detection of spatiotemporal events is one of the keystones in the analysis of horse locomotion. This study assesses the performance of four methods for detecting Foot on and Foot off events. They were developed from an IMU positioned on the canon bone of eight horses during trotting recording on a treadmill and compared to a standard gold method based on motion capture. These methods are based on accelerometer and gyroscope data and use either thresholding or wavelets to detect stride events. The two methods developed from gyroscopic data showed more precision than those developed from accelerometric data with a bias less than 0.6% of stride duration for Foot on and 0.1% of stride duration for Foot off. The gyroscope is less impacted by the different patterns of strides, specific to each horse. To conclude, methods using the gyroscope present the potential of further developments to investigate the effects of different gait paces and ground types in the analysis of horse locomotion.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 4003 ◽  
Author(s):  
Jung Keun Lee ◽  
Woo Chang Jung

Local frame alignment between an inertial measurement unit (IMU) system and an optical motion capture system (MCS) is necessary to combine the two systems for motion analysis and to validate the accuracy of IMU-based motion data by using references obtained through the MCS. In this study, we propose a new quaternion-based local frame alignment method where equations of angular velocity transformation are used to determine the frame alignment orientation in the form of quaternion. The performance of the proposed method was compared with those of three other methods by using data with different angular velocities, noises, and alignment orientations. Furthermore, the effects of the following three factors on the estimation performance were investigated for the first time: (i) transformation concept, i.e., angular velocity transformation vs. angle transformation; (ii) orientation representations, i.e., quaternion vs. direction cosine matrix (DCM); and (iii) applied solvers, i.e., nonlinear least squares method vs. least squares method through pseudoinverse. Within our limited test data, we obtained the following results: (i) the methods using angular velocity transformation were better than the method using angle transformation; (ii) the quaternion is more suitable than the DCM; and (iii) the applied solvers were not critical in general. The proposed method performed the best among the four methods. We surmise that the fewer number of components and constraints of the quaternion in the proposed method compared to the number of components and constraints of the DCM-based methods may result in better accuracy. Owing to the high accuracy and easy setup, the proposed method can be effectively used for local frame alignment between an IMU and a motion capture system.


Sign in / Sign up

Export Citation Format

Share Document