scholarly journals Inflammation and regulatory T cell genes are differentially expressed in peripheral blood mononuclear cells of Parkinson’s disease patients

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zerrin Karaaslan ◽  
Özlem Timirci Kahraman ◽  
Elif Şanlı ◽  
Hayriye Arzu Ergen ◽  
Canan Ulusoy ◽  
...  

AbstractOur aim was to identify the differentially expressed genes (DEGs) in peripheral blood mononuclear cells (PBMC) of Parkinson’s disease (PD) patients and healthy controls by microarray technology and analysis of related molecular pathways by functional annotation. Thirty PD patients and 30 controls were enrolled. Agilent Human 8X60 K Oligo Microarray was used for gene level expression identification. Gene ontology and pathway enrichment analyses were used for functional annotation of DEGs. Protein–protein interaction analyses were performed with STRING. Expression levels of randomly selected DEGs were quantified by real time quantitative polymerase chain reaction (RT-PCR) for validation. Flow cytometry was done to determine frequency of regulatory T cells (Tregs) in PBMC. A total of 361 DEGs (143 upregulated and 218 downregulated) were identified after GeneSpring analysis. DEGs were involved in 28 biological processes, 12 cellular components and 26 molecular functions. Pathway analyses demonstrated that upregulated genes mainly enriched in p53 (CASP3, TSC2, ATR, MDM4, CCNG1) and PI3K/Akt (IL2RA, IL4R, TSC2, VEGFA, PKN2, PIK3CA, ITGA4, BCL2L11) signaling pathways. TP53 and PIK3CA were identified as most significant hub proteins. Expression profiles obtained by RT-PCR were consistent with microarray findings. PD patients showed increased proportions of CD49d+ Tregs, which correlated with disability scores. Survival pathway genes were upregulated putatively to compensate neuronal degeneration. Bioinformatics analysis showed an association between survival and inflammation genes. Increased CD49d+ Treg ratios might signify the effort of the immune system to suppress ongoing neuroinflammation.

2019 ◽  
Vol 149 (12) ◽  
pp. 2110-2119 ◽  
Author(s):  
Zi-Qiang Shao ◽  
Xiong Zhang ◽  
Hui-Hui Fan ◽  
Xiao-Shuang Wang ◽  
Hong-Mei Wu ◽  
...  

ABSTRACT Background Selenium is prioritized to the brain mainly for selenoprotein expression. Selenoprotein T (SELENOT) protects dopaminergic, postmitotic neurons in a mouse model of Parkinson's disease (PD). Objective We hypothesized a proliferative role of SELENOT in neural cells. Methods To assess SELENOT status in PD, sedated male C57BL/6 mice at 10–12 wk of age were injected with 6-hydroxydopamine in neurons, and human peripheral blood mononuclear cells were isolated from 9 healthy subjects (56% men, 68-y-old) and 11 subjects with PD (64% men, 63-y-old). Dopaminergic neural progenitor–like SK-N-SH cells with transient SELENOT overexpression or knockdown were maintained in the presence or absence of the antioxidant N-acetyl-l-cysteine and the calcium channel blocker nimodipine. Cell cycle, proliferation, and signaling parameters were determined by immunoblotting, qPCR, and flow cytometry. Results SELENOT mRNA abundance was increased (P < 0.05) in SK-N-SH cells treated with 1-methyl-4-phenylpyridinium iodide (3.5-fold) and peripheral blood mononuclear cells from PD patients (1.6-fold). Likewise, SELENOT was expressed in tyrosine hydroxylase–positive dopaminergic neurons of 6-hydroxydopamine–injected mice. Knockdown of SELENOT in SK-N-SH cells suppressed (54%; P < 0.05) 5-ethynyl-2′-deoxyuridine incorporation but induced (17–47%; P < 0.05) annexin V–positive cells, CASPASE-3 cleavage, and G1/S cell cycle arrest. SELENOT knockdown and overexpression increased (88–120%; P < 0.05) and reduced (37–42%; P < 0.05) both forkhead box O3 and p27, but reduced (51%; P < 0.05) and increased (1.2-fold; P < 0.05) cyclin-dependent kinase 4 protein abundance, respectively. These protein changes were diminished by nimodipine or N-acetyl-l-cysteine treatment (24 h) at steady-state levels. While the N-acetyl-l-cysteine treatment did not influence the reduction in the amount of calcium (13%; P < 0.05) by SELENOT knockdown, the nimodipine treatment reversed the decreased amount of reactive oxygen species (33%; P < 0.05) by SELENOT overexpression. Conclusions These cellular and mouse data link SELENOT to neural proliferation, expanding our understanding of selenium protection in PD.


2015 ◽  
Vol 30 (13) ◽  
pp. 1830-1834 ◽  
Author(s):  
Nikolaos Papagiannakis ◽  
Maria Xilouri ◽  
Christos Koros ◽  
Maria Stamelou ◽  
Roubina Antonelou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document