scholarly journals Cardiorespiratory synchronisation and systolic blood pressure correlation of peripheral arterial stiffness during endoscopic thoracic sympathectomy

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Toshifumi Muneyasu ◽  
Harutoyo Hirano ◽  
Akira Furui ◽  
Zu Soh ◽  
Ryuji Nakamura ◽  
...  

AbstractMuscle sympathetic nerve activity (MSNA) is known as an effective measure to evaluate peripheral sympathetic activity; however, it requires invasive measurement with the microneurography method. In contrast, peripheral arterial stiffness affected by MSNA is a measure that allows non-invasive evaluation of mechanical changes of arterial elasticity. This paper aims to clarify the features of peripheral arterial stiffness to determine whether it inherits MSNA features towards non-invasive evaluation of its activity. To this end, we propose a method to estimate peripheral arterial stiffness $$\beta$$ β at a high sampling rate. Power spectral analysis of the estimated $$\beta$$ β was then performed on data acquired from 15 patients ($$23.7 \pm 9.0$$ 23.7 ± 9.0 years) who underwent endoscopic thoracic sympathectomy. We examined whether $$\beta$$ β exhibited the features of MSNA where its frequency components synchronise with heart and respiration rates and correlates with the low-frequency component of systolic blood pressure. Regression analysis revealed that the local peak frequency in the range of heartbeat frequency highly correlate with the heart rate ($$R^{2}=0.85$$ R 2 = 0.85 , $$p=6.3\times 10^{-13}$$ p = 6.3 × 10 - 13 ) where the regression slope was approximately 1 and intercept was approximately 0. Frequency analysis then found spectral peaks of $$\beta$$ β approximately 0.2 Hz that correspond to the respiratory cycle. Finally, cross power spectral analysis showed a significant magnitude squared coherence between $$\beta$$ β and systolic blood pressure in the frequency band from 0.04 to 0.2 Hz. These results indicate that $$\beta$$ β inherits the features observed in MSNA that require invasive measurements, and thus $$\beta$$ β can be an effective non-invasive substitution for MSNA measure.

VASA ◽  
2015 ◽  
Vol 44 (5) ◽  
pp. 341-348 ◽  
Author(s):  
Marc Husmann ◽  
Vincenzo Jacomella ◽  
Christoph Thalhammer ◽  
Beatrice R. Amann-Vesti

Abstract. Increased arterial stiffness results from reduced elasticity of the arterial wall and is an independent predictor for cardiovascular risk. The gold standard for assessment of arterial stiffness is the carotid-femoral pulse wave velocity. Other parameters such as central aortic pulse pressure and aortic augmentation index are indirect, surrogate markers of arterial stiffness, but provide additional information on the characteristics of wave reflection. Peripheral arterial disease (PAD) is characterised by its association with systolic hypertension, increased arterial stiffness, disturbed wave reflexion and prognosis depending on ankle-brachial pressure index. This review summarises the physiology of pulse wave propagation and reflection and its changes due to aging and atherosclerosis. We discuss different non-invasive assessment techniques and highlight the importance of the understanding of arterial pulse wave analysis for each vascular specialist and primary care physician alike in the context of PAD.


1941 ◽  
Vol 74 (1) ◽  
pp. 29-40 ◽  
Author(s):  
Philip D. McMaster

Advantage has been taken of the relative transparency of the claw of the mouse to devise a method, here described, to measure the blood pressure in the animal's leg. Direct measurements of the systolic blood pressure from the carotid arteries of anesthetized mice have also been made. Simultaneous blood pressure readings by both these methods applied to the same animal showed close agreement. The systolic pressure ranged from 60 to 126 mm. Hg, according to the conditions.


2021 ◽  
Vol 10 (15) ◽  
pp. 3266
Author(s):  
Laura Willinger ◽  
Leon Brudy ◽  
Renate Oberhoffer-Fritz ◽  
Peter Ewert ◽  
Jan Müller

Background: The association between physical activity (PA) and arterial stiffness is particularly important in children with congenital heart disease (CHD) who are at risk for arterial stiffening. The aim of this study was to examine the association between objectively measured PA and arterial stiffness in children and adolescents with CHD. Methods: In 387 children and adolescents with various CHD (12.2 ± 3.3 years; 162 girls) moderate-to-vigorous PA (MVPA) was assessed with the “Garmin vivofit jr.” for 7 consecutive days. Arterial stiffness parameters including pulse wave velocity (PWV) and central systolic blood pressure (cSBP) were non-invasively assessed by oscillometric measurement via Mobil-O-Graph®. Results: MVPA was not associated with PWV (ß = −0.025, p = 0.446) and cSBP (ß = −0.020, p = 0.552) in children with CHD after adjusting for age, sex, BMI z-score, peripheral systolic blood pressure, heart rate and hypertensive agents. Children with CHD were remarkably active with 80% of the study population reaching the WHO recommendation of average 60 min of MVPA per day. Arterial stiffness did not differ between low-active and high-active CHD group after adjusting for age, sex, BMI z-score, peripheral systolic blood pressure, heart rate and hypertensive agents (PWV: F = 0.530, p = 0.467; cSBP: F = 0.843, p = 0.359). Conclusion: In this active cohort, no association between PA and arterial stiffness was found. Longer exposure to the respective risk factors of physical inactivity might be necessary to determine an impact of PA on the vascular system.


Author(s):  
Konstantinos Markakis ◽  
Nikolaos Pagonas ◽  
Eleni Georgianou ◽  
Panagiota Zgoura ◽  
Benjamin J. Rohn ◽  
...  

1992 ◽  
Vol 146 (2) ◽  
pp. 155-164 ◽  
Author(s):  
A. E. HEDMAN ◽  
J. E. K. HARTIKAINEN ◽  
K. U. O. TAHVANAINEN ◽  
M. O. K. HAKUMÄKI

Circulation ◽  
2021 ◽  
Vol 143 (Suppl_1) ◽  
Author(s):  
Michelle L Meyer ◽  
Veeral Saraiya ◽  
Hirofumi Tanaka ◽  
Priya Palta ◽  
Timothy M Hughes ◽  
...  

Background: Greater central artery stiffness predicts cardiovascular disease and all-cause mortality, thus understanding arterial stiffness determinants has prevention implications. Reports of the temporal association of blood pressure with arterial stiffness are conflicting and the association with myocardial oxygen demand has not been evaluated. Objective: Characterize the association of mid- to later-life cumulative exposure to systolic blood pressure (SBP), myocardial oxygen demand, and hypertension (HTN) with arterial stiffness and its 5-year change in older adults. Methods: We included 1,975 adults (1151 women; 359 Black; visit 5 mean age 74 years) examined in visits 5 (2011-13) and 6 or 7 (2016-19) of the population-based ARIC-NCS with measures of arterial stiffness (carotid-femoral pulse wave velocity (cfPWV)). Higher cfPWV indicates greater arterial stiffness. We calculated cumulative exposures as the sum of averages from four consecutive visits from 1987-89 to 1996-98 divided by total time. Myocardial oxygen demand was calculated as the rate pressure product (RPP): (SBP x heart rate)/1,000. We derived HTN duration as the time since first HTN detection. Associations of cumulative exposures with visit 5 cfPWV and the 5-year cfPWV change were evaluated by multivariable linear regression adjusted for demographics and cardiometabolic factors. Results: Over the mean 5.7 years between visits 5 and 6 or 7, cfPWV increased by 144.9 cm/s (SD: 276.0; range -680.0, 961.5 cm/s). HTN at any visit, duration, and the time-weighted cumulative measures were associated with higher visit 5 cfPWV (Table). Prevalent HTN was inversely associated with cfPWV change. No statistically significant associations were observed for the other exposures and cfPWV change. Conclusion: Cumulative exposure to SBP, RPP, and HTN are modifiable traits associated with higher cfPWV at later-life, but not with rate of cfPWV change in older adulthood. HTN at visit 5 was associated with lower cfPWV change, albeit the change is of small magnitude.


2009 ◽  
Vol 3 (4) ◽  
pp. 175
Author(s):  
D. Kenny ◽  
J. Polson ◽  
J.R. Cockcroft ◽  
R. Martin ◽  
J. Paton ◽  
...  

2021 ◽  
Vol 39 (Supplement 1) ◽  
pp. e354
Author(s):  
Elizabeth do Espirito Santo Cestari ◽  
Priscilla Galisteu de Mello ◽  
Tatiane de Azevedo Rubio ◽  
Maira Regina de Souza ◽  
Eliangela Gianini Gonzales ◽  
...  

Author(s):  
Daniel H. Craighead ◽  
Thomas C. Heinbockel ◽  
Kaitlin A. Freeberg ◽  
Matthew J. Rossman ◽  
Rachel A. Jackman ◽  
...  

Background High‐resistance inspiratory muscle strength training (IMST) is a novel, time‐efficient physical training modality. Methods and Results We performed a double‐blind, randomized, sham‐controlled trial to investigate whether 6 weeks of IMST (30 breaths/day, 6 days/week) improves blood pressure, endothelial function, and arterial stiffness in midlife/older adults (aged 50–79 years) with systolic blood pressure ≥120 mm Hg, while also investigating potential mechanisms and long‐lasting effects. Thirty‐six participants completed high‐resistance IMST (75% maximal inspiratory pressure, n=18) or low‐resistance sham training (15% maximal inspiratory pressure, n=18). IMST was safe, well tolerated, and had excellent adherence (≈95% of training sessions completed). Casual systolic blood pressure decreased from 135±2 mm Hg to 126±3 mm Hg ( P <0.01) with IMST, which was ≈75% sustained 6 weeks after IMST ( P <0.01), whereas IMST modestly decreased casual diastolic blood pressure (79±2 mm Hg to 77±2 mm Hg, P =0.03); blood pressure was unaffected by sham training (all P >0.05). Twenty‐four hour systolic blood pressure was lower after IMST versus sham training ( P =0.01). Brachial artery flow‐mediated dilation improved ≈45% with IMST ( P <0.01) but was unchanged with sham training ( P =0.73). Human umbilical vein endothelial cells cultured with subject serum sampled after versus before IMST exhibited increased NO bioavailability, greater endothelial NO synthase activation, and lower reactive oxygen species bioactivity ( P <0.05). IMST decreased C‐reactive protein ( P =0.05) and altered select circulating metabolites (targeted plasma metabolomics) associated with cardiovascular function. Neither IMST nor sham training influenced arterial stiffness ( P >0.05). Conclusions High‐resistance IMST is a safe, highly adherable lifestyle intervention for improving blood pressure and endothelial function in midlife/older adults with above‐normal initial systolic blood pressure. Registration URL: https://www.clinicaltrials.gov ; Unique identifier: NCT03266510.


Sign in / Sign up

Export Citation Format

Share Document