scholarly journals Non-specific interactions of antibody-oligonucleotide conjugates with living cells

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Victor Lehot ◽  
Isabelle Kuhn ◽  
Marc Nothisen ◽  
Stéphane Erb ◽  
Sergii Kolodych ◽  
...  

AbstractAntibody-Oligonucleotide Conjugates (AOCs) represent an emerging class of functionalized antibodies that have already been used in a wide variety of applications. While the impact of dye and drug conjugation on antibodies’ ability to bind their target has been extensively studied, little is known about the effect caused by the conjugation of hydrophilic and charged payloads such as oligonucleotides on the functions of an antibody. Previous observations of non-specific interactions of nucleic acids with untargeted cells prompted us to further investigate their impact on AOC binding abilities and cell selectivity. We synthesized a series of single- and double-stranded AOCs, as well as a human serum albumin-oligonucleotide conjugate, and studied their interactions with both targeted and non-targeted living cells using a time-resolved analysis of ligand binding assay. Our results indicate that conjugation of single strand oligonucleotides to proteins induce consistent non-specific interactions with cell surfaces while double strand oligonucleotides have little or no effect, depending on the preparation method.

2009 ◽  
Vol 392 (2) ◽  
pp. 103-109 ◽  
Author(s):  
Eija Martikkala ◽  
Mirva Lehmusto ◽  
Minna Lilja ◽  
Anita Rozwandowicz-Jansen ◽  
Jenni Lunden ◽  
...  

1975 ◽  
Vol 80 (1_Suppla) ◽  
pp. S15
Author(s):  
K. H. Rudorff ◽  
H. J. Kröll ◽  
J. Herrmann

ACS Sensors ◽  
2020 ◽  
Author(s):  
Ke-Jia Wu ◽  
Chun Wu ◽  
Feng Chen ◽  
Sha-Sha Cheng ◽  
Dik-Lung Ma ◽  
...  

1991 ◽  
Vol 129 (2) ◽  
pp. 189-196 ◽  
Author(s):  
M. K. Bläuer ◽  
P. J. Tuohimaa ◽  
P. J. Vilja

ABSTRACT A specific and sensitive immunoenzymometric assay (IEMA) was developed for measuring the quantity of chicken progesterone receptor (PR) in tissue cytosol. The assay uses two monoclonal antibodies to the PR. One is used to capture the PR. The second (labelled with biotin) reacts first with the captured receptor and subsequently with avidin-labelled horseradish peroxidase to provide an enzymatic end-point. The method has a determination range from 0·3 to 60 pmol/l. Intra- and interassay coefficients of variation were 3·7% and 9·0% respectively. The assay can be performed with equal results as a rapid (3 h) or an overnight procedure. The IEMA is convenient, especially for signal measurement and the calculation of results. No ultracentrifugation of samples is needed, since the IEMA can be performed on low-speed cytosol samples. Assay results correlated well (r = 0·927) with those obtained by the conventional ligand-binding assay used in our laboratory. Similar results were obtained with the IEMA and the ligand-binding assay after exposure of cytosol samples to increased temperatures: at 20 °C the PR remained stable for the 4-h period examined, whereas at 37 °C almost complete degradation of the PR was observed in 30 min. Being more than 100 times as sensitive as the ligand-binding assay, the IEMA enabled the quantification of PR for the first time in such tissues as the bursa and small intestine even of immature animals. Journal of Endocrinology (1991) 129, 189–196


1995 ◽  
Vol 129 (5) ◽  
pp. 1287-1300 ◽  
Author(s):  
D Zhang ◽  
R B Nicklas

We analyzed the role that chromosomes, kinetochores, and centrosomes play in spindle assembly in living grasshopper spermatocytes by reconstructing spindles lacking certain components. We used video-enhanced, polarization microscopy to distinguish the effect of each component on spindle microtubule dynamics and we discovered that both chromosomes and centrosomes make potent and very different contributions to the organization of the spindle. Remarkably, the position of a single chromosome can markedly affect the distribution of microtubules within a spindle or even alter the fate of spindle assembly. In an experimentally constructed spindle having only one chromosome, moving the chromosome to one of the two poles induces a dramatic assembly of microtubules at the nearer pole and a concomitant disassembly at the farther pole. So long as a spindle carries a single chromosome it will persist normally. A spindle will also persist even when all chromosomes are detached and then removed from the cell. If, however, a single chromosome remains in the cell but is detached from the spindle and kept in the cytoplasm, the spindle disassembles. One might expect the effect of chromosomes on spindle assembly to relate to a property of a specific site on each chromosome, perhaps the kinetochore. We have ruled out that possibility by showing that it is the size of chromosomes rather than the number of kinetochores that matters. Although chromosomes affect spindle assembly, they cannot organize a spindle in the absence of centrosomes. In contrast, centrosomes can organize a functional bipolar spindle in the absence of chromosomes. If both centrosomes and chromosomes are removed from the cell, the spindle quickly disappears.


Bioanalysis ◽  
2014 ◽  
Vol 6 (8) ◽  
pp. 1033-1036 ◽  
Author(s):  
Rebecca M Crisino ◽  
Linlin Luo ◽  
Brian Geist ◽  
Jad Zoghbi ◽  
Franklin Spriggs

Sign in / Sign up

Export Citation Format

Share Document