scholarly journals Imaging current distribution in a topological insulator Bi2Se3 in the presence of competing surface and bulk contributions to conductivity

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Amit Jash ◽  
Ankit Kumar ◽  
Sayantan Ghosh ◽  
A. Bharathi ◽  
S. S. Banerjee

AbstractTwo-dimensional (2D) topological surface states in a three-dimensional topological insulator (TI) should produce uniform 2D surface current distribution. However, our transport current imaging studies on Bi2Se3 thin film reveal non-uniform current sheet flow at 15 K with strong edge current flow. This is consistent with other imaging studies on thin films of Bi2Se3. In contrast to strong edge current flow in thin films, in single crystal of Bi2Se3 at 15 K our current imaging studies show the presence of 3.6 nm thick uniform 2D sheet current flow. Above 70 K, this uniform 2D sheet current sheet begins to disintegrate into a spatially non-uniform flow. The flow becomes patchy with regions having high and low current density. The area fraction of the patches with high current density rapidly decreases at temperatures above 70 K, with a temperature dependence of the form $$1/\left| {T - 70} \right|^{0.35}$$ 1 / T - 70 0.35 . The temperature scale of 70 K coincides with the onset of bulk conductivity in the crystal due to electron doping by selenium vacancy clusters in Bi2Se3. Thus our results show a temperature dependent competition between surface and bulk conductivity produces a temperature dependent variation in uniformity of current flow in the topological insulator.

2021 ◽  
Author(s):  
Amit Jash ◽  
Ankit Kumar ◽  
Sayantan Ghosh ◽  
A. Bharathi ◽  
S. Banerjee

Abstract Two-dimensional (2D) topological surface states in a three-dimensional topological insulator (TI) should produce uniform 2D surface current distribution. However, our transport current imaging studies on Bi2Se3 thin film reveal non-uniform current sheet flow at 15 K with strong edge current flow. This is consistent with other imaging studies on thin films of Bi2Se3. In contrast to strong edge current flow in thin films, in single crystal of Bi2Se3 at 15 K our current imaging studies show the presence of 3.6 nm thick uniform 2D sheet current flow. Above 70 K, this uniform 2D sheet current sheet begins to disintegrate into a spatially non-uniform flow. The flow becomes patchy with regions having high and low current density. The area fraction of the patches with high current density rapidly decreases at temperatures above 70 K, with a temperature dependence of the form 1/|T-70| 0.35. The temperature scale of 70 K coincides with the onset of bulk conductivity in the crystal due to electron doping by selenium vacancy clusters in Bi2Se3. Thus our results show a temperature dependent competition between surface and bulk conductivity produces a temperature dependent variation in uniformity of current flow in the topological insulator.


Author(s):  
P. Lu ◽  
W. Huang ◽  
C.S. Chern ◽  
Y.Q. Li ◽  
J. Zhao ◽  
...  

The YBa2Cu3O7-x thin films formed by metalorganic chemical vapor deposition(MOCVD) have been reported to have excellent superconducting properties including a sharp zero resistance transition temperature (Tc) of 89 K and a high critical current density of 2.3x106 A/cm2 or higher. The origin of the high critical current in the thin film compared to bulk materials is attributed to its structural properties such as orientation, grain boundaries and defects on the scale of the coherent length. In this report, we present microstructural aspects of the thin films deposited on the (100) LaAlO3 substrate, which process the highest critical current density.Details of the thin film growth process have been reported elsewhere. The thin films were examined in both planar and cross-section view by electron microscopy. TEM sample preparation was carried out using conventional grinding, dimpling and ion milling techniques. Special care was taken to avoid exposure of the thin films to water during the preparation processes.


2021 ◽  
Vol 22 ◽  
pp. 14-19
Author(s):  
Soon-Gil Jung ◽  
Duong Pham ◽  
Jung Min Lee ◽  
Yoonseok Han ◽  
Won Nam Kang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document