scholarly journals Author Correction: Therapeutic efficacy of repetitive transcranial magnetic stimulation in an animal model of Alzheimer’s disease

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jin Seung Choung ◽  
Jong Moon Kim ◽  
Myoung-Hwan Ko ◽  
Dong Sik Cho ◽  
MinYoung Kim

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Yangyang Lin ◽  
Jian Jin ◽  
Rongke Lv ◽  
Yuan Luo ◽  
Weiping Dai ◽  
...  

AbstractAlzheimer’s disease (AD) is a progressive neurodegenerative disease with high prevalence rate among the elderly population. A large number of clinical studies have suggested repetitive transcranial magnetic stimulation (rTMS) as a promising non-invasive treatment for patients with mild to moderate AD. However, the underlying cellular and molecular mechanisms remain largely uninvestigated. In the current study, we examined the effect of high frequency rTMS treatment on the cognitive functions and pathological changes in the brains of 4- to 5-month old 5xFAD mice, an early pathological stage with pronounced amyloidopathy and cognitive deficit. Our results showed that rTMS treatment effectively prevented the decline of long-term memories of the 5xFAD mice for novel objects and locations. Importantly, rTMS treatment significantly increased the drainage efficiency of brain clearance pathways, including the glymphatic system in brain parenchyma and the meningeal lymphatics, in the 5xFAD mouse model. Significant reduction of Aβ deposits, suppression of microglia and astrocyte activation, and prevention of decline of neuronal activity as indicated by the elevated c-FOS expression, were observed in the prefrontal cortex and hippocampus of the rTMS-treated 5xFAD mice. Collectively, these findings provide a novel mechanistic insight of rTMS in regulating brain drainage system and β-amyloid clearance in the 5xFAD mouse model, and suggest the potential use of the clearance rate of contrast tracer in cerebrospinal fluid as a prognostic biomarker for the effectiveness of rTMS treatment in AD patients.


Healthcare ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 949
Author(s):  
Athina-Maria Aloizou ◽  
Georgia Pateraki ◽  
Konstantinos Anargyros ◽  
Vasileios Siokas ◽  
Christos Bakirtzis ◽  
...  

Dementia is a debilitating impairment of cognitive functions that affects millions of people worldwide. There are several diseases belonging to the dementia spectrum, most prominently Alzheimer’s disease (AD), vascular dementia (VD), Lewy body dementia (LBD) and frontotemporal dementia (FTD). Repetitive transcranial magnetic stimulation (rTMS) is a safe, non-invasive form of brain stimulation that utilizes a magnetic coil to generate an electrical field and induce numerous changes in the brain. It is considered efficacious for the treatment of various neuropsychiatric disorders. In this paper, we review the available studies involving rTMS in the treatment of these dementia types. The majority of studies have involved AD and shown beneficial effects, either as a standalone, or as an add-on to standard-of-care pharmacological treatment and cognitive training. The dorsolateral prefrontal cortex seems to hold a central position in the applied protocols, but several parameters still need to be defined. In addition, rTMS has shown potential in mild cognitive impairment as well. Regarding the remaining dementias, research is still at preliminary phases, and large, randomized studies are currently lacking.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Xueyun Chen ◽  
Shu Chen ◽  
Weidi Liang ◽  
Fang Ba

Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive and painless technique that has been applied for the treatments of diverse neurodegenerative disorders. In the current study, its anti-Alzheimer’s disease (AD) effect was assessed and the mechanism driving the effect was explored. The AD symptoms were induced via the intracranial injection of Aβ1-42 in mice and then treated with rTMS of 1 Hz or 10 Hz. The anti-AD effect of rTMS was assessed by Morris water maze (MWM), histological staining and western blotting. The results showed that rTMS administrations of both frequencies improved the cognitive function and suppressed neuron apoptosis in AD mice. Moreover, the treatment also increased the brain BDNF, NGF, and doublecortin levels, which represented the increased viability of neurons by rTMS. The injection of Aβ1-42 also increased the expressions of p-GSK-3β, p-Tau, and p-β-catenin and suppressed the level of total β-catenin. After the treatments of rTMS, the level of β-catenin was restored, indicating the activation of β-catenin signaling. In conclusion, the findings outlined in the current study demonstrated that the anti-AD effect of rTMS was associated with the activation of β-catenin, which would promote the survival of neurons.


Sign in / Sign up

Export Citation Format

Share Document