scholarly journals A Raman probe of phonons and electron–phonon interactions in the Weyl semimetal NbIrTe4

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Iraj Abbasian Shojaei ◽  
Seyyedesadaf Pournia ◽  
Congcong Le ◽  
Brenden R. Ortiz ◽  
Giriraj Jnawali ◽  
...  

AbstractThere is tremendous interest in measuring the strong electron–phonon interactions seen in topological Weyl semimetals. The semimetal NbIrTe4 has been proposed to be a Type-II Weyl semimetal with 8 pairs of opposite Chirality Weyl nodes which are very close to the Fermi energy. We show using polarized angular-resolved micro-Raman scattering at two excitation energies that we can extract the phonon mode dependence of the Raman tensor elements from the shape of the scattering efficiency versus angle. This van der Waals semimetal with broken inversion symmetry and 24 atoms per unit cell has 69 possible phonon modes of which we measure 19 modes with frequencies and symmetries consistent with Density Functional Theory calculations. We show that these tensor elements vary substantially in a small energy range which reflects a strong variation of the electron–phonon coupling for these modes.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
J.-Z. Ma ◽  
Q.-S. Wu ◽  
M. Song ◽  
S.-N. Zhang ◽  
E. B. Guedes ◽  
...  

AbstractConstrained by the Nielsen-Ninomiya no-go theorem, in all so-far experimentally determined Weyl semimetals (WSMs) the Weyl points (WPs) always appear in pairs in the momentum space with no exception. As a consequence, Fermi arcs occur on surfaces which connect the projections of the WPs with opposite chiral charges. However, this situation can be circumvented in the case of unpaired WP, without relevant surface Fermi arc connecting its surface projection, appearing singularly, while its Berry curvature field is absorbed by nontrivial charged nodal walls. Here, combining angle-resolved photoemission spectroscopy with density functional theory calculations, we show experimentally that a singular Weyl point emerges in PtGa at the center of the Brillouin zone (BZ), which is surrounded by closed Weyl nodal walls located at the BZ boundaries and there is no Fermi arc connecting its surface projection. Our results reveal that nontrivial band crossings of different dimensionalities can emerge concomitantly in condensed matter, while their coexistence ensures the net topological charge of different dimensional topological objects to be zero. Our observation extends the applicable range of the original Nielsen-Ninomiya no-go theorem which was derived from zero dimensional paired WPs with opposite chirality.


Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3022 ◽  
Author(s):  
Marcin Maździarz ◽  
Tomasz Mościcki

Two new hypothetical zirconium diboride (ZrB 2 ) polymorphs: (hP6-P6 3 /mmc-space group, no. 194) and (oP6-Pmmn-space group, no. 59), were thoroughly studied under the first-principles density functional theory calculations from the structural, mechanical and thermodynamic properties point of view. The proposed phases are thermodynamically stable (negative formation enthalpy). Studies of mechanical properties indicate that new polymorphs are less hard than the known phase (hP3-P6/mmm-space group, no. 191) and are not brittle. Analysis of phonon band structure and density of states (DOS) also show that the phonon modes have positive frequencies everywhere and the new ZrB 2 phases are not only mechanically but also dynamically stable. The estimated acoustic Debye temperature, Θ D , for the two new proposed ZrB 2 phases is about 760 K. The thermodynamic properties such as internal energy, free energy, entropy and constant-volume specific heat are also presented.


2003 ◽  
Vol 58 (12) ◽  
pp. 738-748 ◽  
Author(s):  
Meisa S. Al-Noeemat ◽  
Reem A. Al-Ma’ani ◽  
Salim M. Khalil

MINDO-Forces calculations with complete geometry optimization have been performed on cyclopentanone and its enol counter part, perfluorination of cyclop entanone and its enol counterpart and X-cyclopentanones and their X-enols, where X is NO2, CF3, CN, OH, NH2 and O−. It was found that ketone is more stable than its enol counterpart. Perfluorination destabilizes ketone on the expense of enol. These results agree with the experimental results and density functional theory calculations. All substituents are destabilizing except O− in the case of cyclopentanone. It was found that NO2 and CF3 behave as strong electron withdrawing groups, CN and NC show amphielectronic behavior, and the substituents OH,NH2 and O− behave as electron releasing groups with O− being strongest. Geometrical parameters, heats of formation, entropies, and Gibbs free energies are reported


2014 ◽  
Vol 67 (9) ◽  
pp. 1330 ◽  
Author(s):  
Rebecca S. Szabadai ◽  
Jesse Roth-Barton ◽  
Kenneth P. Ghiggino ◽  
Jonathan M. White ◽  
David J. D. Wilson

A series of seven thiophen-substituted diketopyrrolopyrrole derivatives were synthesised and their solution absorption spectra characterised in a range of solvents of varying polarity. The absorption spectra of these diketopyrrolopyrrole derivatives exhibited significant negative solvatochromism. The behaviour is consistent with results of time-dependent density-functional theory calculations of excitation energies. Calculated electronic structures suggest that there is significant charge transfer between the electron-donating thiophen substituents and the diketopyrrolopyrrole core but that the magnitude of this charge shift is reduced in the excited state compared with the ground state. The resulting reduction in polarity of the excited state accounts for the negative solvatochromism observed. The implications of the results for the potential application of diketopyrrolopyrrole compounds as photovoltaic materials are considered.


2019 ◽  
Author(s):  
Hassan Harb ◽  
Lee Thompson ◽  
Hrant Hratchian

Lanthanide hydroxides are key species in a variety of catalytic processes and in the preparation of corresponding oxides. This work explores the fundamental structure and bonding of the simplest lanthanide hydroxide, LnOH (Ln=La-Lu), using density functional theory calculations. Interestingly, the calculations predict that all structures of this series will be linear. Furthermore, these results indicate a valence electron configuration featuring an occupied sigma orbital and two occupied pi orbitals for all LnOH compounds, suggesting that the lanthanide-hydroxide bond is best characterized as a covalent triple bond.


2019 ◽  
Author(s):  
Hassan Harb ◽  
Lee Thompson ◽  
Hrant Hratchian

Lanthanide hydroxides are key species in a variety of catalytic processes and in the preparation of corresponding oxides. This work explores the fundamental structure and bonding of the simplest lanthanide hydroxide, LnOH (Ln=La-Lu), using density functional theory calculations. Interestingly, the calculations predict that all structures of this series will be linear. Furthermore, these results indicate a valence electron configuration featuring an occupied sigma orbital and two occupied pi orbitals for all LnOH compounds, suggesting that the lanthanide-hydroxide bond is best characterized as a covalent triple bond.


Sign in / Sign up

Export Citation Format

Share Document