scholarly journals Exhausting repetitive piano tasks lead to local forearm manifestation of muscle fatigue and negatively affect musical parameters

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Etienne Goubault ◽  
Felipe Verdugo ◽  
Justine Pelletier ◽  
Caroline Traube ◽  
Mickaël Begon ◽  
...  

AbstractMuscle fatigue is considered as a risk factor for developing playing-related muscular disorders among professional pianists and could affect musical performance. This study investigated in 50 pianists the effect of fatiguing repetitive piano sequences on the development of forearm muscle fatigue and on piano performance parameters. Results showed signs of myoelectric manifestation of fatigue in the 42-electromyographic bipolar electrodes positioned on the forearm to record finger and wrist flexor and extensor muscles, through a significant non-constant decrease of instantaneous median frequency during two repetitive Digital (right-hand 16-tones sequence) and Chord (right-hand chords sequence) excerpts, with extensor muscles showing greater signs of fatigue than flexor muscles. In addition, muscle fatigue negatively affected key velocity, a central feature of piano sound intensity, in both Digital and Chord excerpts, and note-events, a fundamental aspect of musicians’ performance parameter, in the Chord excerpt only. This result highlights that muscle fatigue may alter differently pianists’ musical performance according to the characteristics of the piece played.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Erik P. Lamers ◽  
Juliana C. Soltys ◽  
Keaton L. Scherpereel ◽  
Aaron J. Yang ◽  
Karl E. Zelik

Abstract We investigated the extent to which an un-motorized, low-profile, elastic exosuit reduced the rate of fatigue for six lumbar extensor muscles during leaning. Six healthy subjects participated in an A-B-A (withdrawal design) study protocol, which involved leaning at 45º for up to 90 s without exosuit assistance (A1), then with assistance (B), then again without assistance (A2). The exosuit provided approximately 12–16 Nm of lumbar extension torque. We measured lumbar muscle activity (via surface electromyography) and assessed fatigue rate via median frequency slope. We found that five of the six subjects showed consistent reductions in fatigue rate (ranging from 26% to 87%) for a subset of lumbar muscles (ranging from one to all six lumbar muscles measured). These findings objectively demonstrate the ability of a low-profile elastic exosuit to reduce back muscle fatigue during leaning, which may improve endurance for various occupations.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Antonio Sarmento ◽  
Guilherme Fregonezi ◽  
Maria Lira ◽  
Layana Marques ◽  
Francesca Pennati ◽  
...  

AbstractMuscle fatigue is a complex phenomenon enclosing various mechanisms. Despite technological advances, these mechanisms are still not fully understood in vivo. Here, simultaneous measurements of pressure, volume, and ribcage inspiratory muscle activity were performed non-invasively during fatigue (inspiratory threshold valve set at 70% of maximal inspiratory pressure) and recovery to verify if inspiratory ribcage muscle fatigue (1) leads to slowing of contraction and relaxation properties of ribcage muscles and (2) alters median frequency and high-to-low frequency ratio (H/L). During the fatigue protocol, sternocleidomastoid showed the fastest decrease in median frequency and slowest decrease in H/L. Fatigue was also characterized by a reduction in the relative power of the high-frequency and increase of the low-frequency. During recovery, changes in mechanical power were due to changes in shortening velocity with long-lasting reduction in pressure generation, and slowing of relaxation [i.e., tau (τ), half-relaxation time (½RT), and maximum relaxation rate (MRR)] was observed with no significant changes in contractile properties. Recovery of median frequency was faster than H/L, and relaxation rates correlated with shortening velocity and mechanical power of inspiratory ribcage muscles; however, with different time courses. Time constant of the inspiratory ribcage muscles during fatigue and recovery is not uniform (i.e., different inspiratory muscles may have different underlying mechanisms of fatigue), and MRR, ½RT, and τ are not only useful predictors of inspiratory ribcage muscle recovery but may also share common underlying mechanisms with shortening velocity.


2007 ◽  
Vol 22 (1) ◽  
pp. 24-25
Author(s):  
Naotaka Sakai

Among 703 professional pianists with medical problems in their hands seen by the author between 1981 and 2000, there were 27 patients who had interosseous muscle pain (23 women, 4 men; mean age, 30 yrs). The main symptom was dorsal hand pain during piano performance, especially when striking the keys with each finger rounded, mainly in the scale technique. Tenderness was noted in the deep part of the dorsal hand in the interosseous muscles, but not along or around the finger extensors. Patients sometimes complained of muscle weakness on abduction of the index, ring, and/or little fingers when performing octaves or chords on the piano keyboard. Resisted abduction and adduction testing of the fingers reproduced the pain which they experienced during or after performance. Pain occurred in the right hand in 10, left hand in 5, and bilaterally in 12. The pain was localized in the 4th and 5th interossei in 15 patients, in the 3rd and 4th in 14 patients; in the 2nd and 3rd in 11 patients; and in the 1st and 2nd in 1 patient.


2005 ◽  
Vol 99 (1) ◽  
pp. 141-153 ◽  
Author(s):  
Micaela Schmid ◽  
Marco Schieppati

Neck proprioceptive input, as elicited by muscle vibration, can produce destabilizing effects on stance and locomotion. Neck muscle fatigue produces destabilizing effects on stance, too. Our aim was to assess whether neck muscle fatigue can also perturb the orientation in space during a walking task. Direction and amplitude of the path covered during stepping in place were measured in 10 blindfolded subjects, who performed five 30-s stepping trials before and after a 5-min period of isometric dorsal neck muscle contraction against a load. Neck muscle electromyogram amplitude and median frequency during the head extensor effort were used to compute a fatigue index. Head and body kinematics were recorded by an optoelectronic system, and stepping cadence was measured by sensorized insoles. Before the contraction period, subjects normally stepped on the spot or drifted forward. After contraction, some subjects reproduced the same behavior, whereas others reduced their forward progression or even stepped backward. The former subjects showed minimal signs of fatigue and the latter ones marked signs of fatigue, as quantified by the dorsal neck electromyogram index. Head position and cadence were unaffected in either group of subjects. We argue that the abnormal fatigue-induced afferent input originating in the receptors transducing the neck muscle metabolic state can modulate the egocentric spatial reference frame. Notably, the effects of neck muscle fatigue on orientation are opposite to those produced by neck proprioception. The neck represents a complex source of inputs capable of modifying our orientation in space during a locomotor task.


Author(s):  
Hayder A. Yousif ◽  
Abdul Rahim Norasmadi ◽  
Ahmad Faizal Bin Salleh ◽  
Ammar Zakaria

The main goal of this research work is to study and evaluate the muscles force and fatigue of Gastrocnemius Medialis (GMS), Gluteus Maximus (GM), and Gastrocnemius Lateralis (GL) during running for 400-meters based on surface Electromyography (sEMG) signals. The sEMG signals of the selected muscles from the right leg have been collected by using bipolar electrodes from 15 subjects during the run on the tartan athletic track with two pacing strategies. The first strategy: 1st 200-meters running 87% - 94% of full speed and last 200-meters sprinting (full speed). The second strategy: 1st 300-meters running 87% - 94% of sprinting and last 100-meters sprinting. The rate of fatigue has been calculated by using Root Mean Square (RMS) and Median Frequency (MDF) features. Then, the slopes of linear regression were calculated from both RMS and MDF at each 100-meters. The linear slope values represented the rate of fatigue and force. From the results of 1st and 2nd running strategies, the force of GM and GL muscles increased during the 4th 100-meters of the 1st strategy and decreased with GM and GMS muscles during the 4th 100-meters of the 2nd strategy. The less index fatigues were during the 1st strategy for most selected muscles. Finally, it can be concluded the running with the 1st strategy get less fatigues and the force of most selected muscles increased compared with the 2nd strategy based on the results of time and frequency domain features (RMS and MDF).


2014 ◽  
Vol 29 (3) ◽  
pp. 150-154 ◽  
Author(s):  
M Clemente ◽  
S Lourenço ◽  
D Coimbra ◽  
A Silva ◽  
J Gabriel ◽  
...  

Piano players, as well as other musicians, spend a long time training to achieve the best results, sometimes adopting unnatural body positions that may cause musculoskeletal pain. This paper presents the preliminary results of a study targeting the analysis of the head and cervical postures of 17 piano players during musical performance. It was found, as a common feature, that the players tilt the head to the right and forward towards the score and keyboard. Players who know the score by heart tend to move their heads more compared to the ones who have to keep their eyes on the score.


GeroScience ◽  
2019 ◽  
Vol 42 (1) ◽  
pp. 251-269 ◽  
Author(s):  
Gerold Ebenbichler ◽  
Richard Habenicht ◽  
Sara Ziegelbecker ◽  
Josef Kollmitzer ◽  
Patrick Mair ◽  
...  

AbstractThe impact of aging on the back muscles is not well understood, yet may hold clues to both normal aging and chronic low back pain (cLBP). This study sought to investigate whether the median frequency (MF) surface electromyographic (SEMG) back muscle fatigue method—a proxy for glycolytic muscle metabolism—would be able to detect age- and sex-specific differences in neuromuscular and muscle metabolic functions in individuals with cLBP in a reliable way, and whether it would be as sensitive as when used on healthy individuals. With participants seated on a dynamometer (20° trunk anteflexion), paraspinal SEMG activity was recorded bilaterally from the multifidus (L5), longissimus (L2), and iliolumbalis (L1) muscles during isometric, sustained back extensions loaded at 80% of maximum from 117 younger (58 females) and 112 older (56 female) cLBP individuals. Tests were repeated after 1–2 days and 6 weeks. Median frequency, the SEMG variable indicating neuromuscular fatigue, was analyzed. Maximum back extensor strength was comparable between younger and older participants. Significantly less MF-SEMG back muscle fatigue was observed in older as compared to younger, and in older female as compared to older male cLBP individuals. Relative reliability was excellent, but absolute reliability appeared large for this SEMG-fatigue measure. Findings suggest that cLBP likely does not mask the age-specific diagnostic potential of the MF-SEMG back extensor fatigue method. Thus, this method possesses a great potential to be further developed into a valuable biomarker capable of detecting back muscle function at risk of sarcopenia at very early stages.


2015 ◽  
Vol 24 (3) ◽  
pp. 293-299 ◽  
Author(s):  
Kazem Malmir ◽  
Gholam Reza Olyaei ◽  
Saeed Talebian ◽  
Ali Ashraf Jamshidi

Context:Cyclic movements and muscle fatigue may result in musculoskeletal injuries by inducing changes in neuromuscular control. Ankle frontal-plane neuromuscular control has rarely been studied in spite of its importance.Objective:To compare the effects of peroneal muscle fatigue and a cyclic passive-inversion (CPI) protocol on ankle neuromuscular control during a lateral hop.Design:Quasi-experimental, repeated measures.Setting:University laboratory.Participants:22 recreationally active, healthy men with no history of ankle sprain or giving way.Interventions:Participants performed a lateral hop before and after 2 interventions on a Biodex dynamometer. They were randomly assigned to intervention order and interventions were 1 wk apart. A passive intervention included 40 CPIs at 5°/s through 80% of maximum range of motion, and a fatigue intervention involved an isometric eversion at 40% of the maximal voluntary isometric contraction until the torque decreased to 50% of its initial value.Main Outcome Measures:Median frequency of the peroneus longus during the fatigue protocol, energy absorption by the viscoelastic tissues during the CPI protocol, and feedforward onset and reaction time of the peroneus longus during landing.Results:A significant fall in median frequency (P < .05) and a significant decrease in energy absorption (P < .05) confirmed fatigue and a change in viscoelastic behavior, respectively. There was a significant main effect of condition on feedforward onset and reaction time (P < .05). No significant main effect of intervention or intervention × condition interaction was noted (P > .05). There was a significant difference between pre- and postintervention measures (P < .0125), but no significant difference was found between postintervention measures (P > .0125).Conclusions:Both fatigue and the CPI may similarly impair ankle neuromuscular control. Thus, in prolonged sports competitions and exercises, the ankle may be injured due to either fatigue or changes in the biomechanical properties of the viscoelastic tissues.


Author(s):  
Yan Hao Shao ◽  
Yan Song Zhou ◽  
Yan Zhang ◽  
Yao Dong Gu ◽  
Gusztáv Fekete ◽  
...  

The median frequency (MF) and mean power frequency (MPF) have been confirmed as reliable indicators of muscle fatigue during sustained contractions. The purpose of this study was to explore whether single-monitor arm could release muscle fatigue in neck-shoulder region while maintaining a prolonged seated posture viewing computer screen by measuring MF and MPF. Ten male healthy university students volunteered to participate in the test. Surface electromyography of splenius capitis (SC) and trapezius (TR) were recorded. Each subject performed normal text editing tasks or video watching activities for 120 minutes with different monitor arm positions (Fixed, moving downward and moving upward). Results showed that the MPF of SC and TR had significant decreased trend as monitor arm at fixed position. As monitor arm moving upward, the MF and MPF of both muscles decreased significantly with time and the MF showed the lowest decline rate during the entire testing process. No significant shift of MF and MPF were observed as monitor arm moving downward. Findings of this study may have important implications for people who use computer intensively to release neck-shoulder muscle fatigue.


ScienceAsia ◽  
2015 ◽  
Vol 41 (4) ◽  
pp. 263 ◽  
Author(s):  
Sirinee Thongpanja ◽  
Angkoon Phinyomark ◽  
Huosheng Hu ◽  
Chusak Limsakul ◽  
Pornchai Phukpattaranont

Sign in / Sign up

Export Citation Format

Share Document