Comparing the Effects of Peroneal Muscle Fatigue and Cyclic Loading on Ankle Neuromuscular Control During Lateral-Hop Landing

2015 ◽  
Vol 24 (3) ◽  
pp. 293-299 ◽  
Author(s):  
Kazem Malmir ◽  
Gholam Reza Olyaei ◽  
Saeed Talebian ◽  
Ali Ashraf Jamshidi

Context:Cyclic movements and muscle fatigue may result in musculoskeletal injuries by inducing changes in neuromuscular control. Ankle frontal-plane neuromuscular control has rarely been studied in spite of its importance.Objective:To compare the effects of peroneal muscle fatigue and a cyclic passive-inversion (CPI) protocol on ankle neuromuscular control during a lateral hop.Design:Quasi-experimental, repeated measures.Setting:University laboratory.Participants:22 recreationally active, healthy men with no history of ankle sprain or giving way.Interventions:Participants performed a lateral hop before and after 2 interventions on a Biodex dynamometer. They were randomly assigned to intervention order and interventions were 1 wk apart. A passive intervention included 40 CPIs at 5°/s through 80% of maximum range of motion, and a fatigue intervention involved an isometric eversion at 40% of the maximal voluntary isometric contraction until the torque decreased to 50% of its initial value.Main Outcome Measures:Median frequency of the peroneus longus during the fatigue protocol, energy absorption by the viscoelastic tissues during the CPI protocol, and feedforward onset and reaction time of the peroneus longus during landing.Results:A significant fall in median frequency (P < .05) and a significant decrease in energy absorption (P < .05) confirmed fatigue and a change in viscoelastic behavior, respectively. There was a significant main effect of condition on feedforward onset and reaction time (P < .05). No significant main effect of intervention or intervention × condition interaction was noted (P > .05). There was a significant difference between pre- and postintervention measures (P < .0125), but no significant difference was found between postintervention measures (P > .0125).Conclusions:Both fatigue and the CPI may similarly impair ankle neuromuscular control. Thus, in prolonged sports competitions and exercises, the ankle may be injured due to either fatigue or changes in the biomechanical properties of the viscoelastic tissues.

2012 ◽  
Vol 21 (4) ◽  
pp. 306-312 ◽  
Author(s):  
David J Dominguese ◽  
Jeff Seegmiller ◽  
B. Andrew Krause

Context:Lower extremity injury is prevalent among individuals participating in sports. Numerous variables have been reported as predisposing risk factors to injury; however, the effects of muscle fatigue on landing kinetics are unclear.Objectives:To investigate the effects of a single session of repeated muscle fatigue on peak vertical ground-reaction force (GRF) during drop landings.Design:Mixed factorial with repeated measures.Setting:Controlled laboratory.Participants:10 female and 10 male healthy recreational athletes.Intervention:Subjects performed 3 fatigued drop landings (60 cm) after four 20-s Wingate anaerobic tests (WATs) with 5 min of active recovery between fatigued conditions.Main Outcome Measures:Kinetic data of peak forefoot (F1) force, peak rear-foot (F2) force, and anteroposterior (AP) and mediolateral (ML) forces at both F1 and F2.Results:A significant main effect was observed in the nonfatigued and fatigued drop landings in respect to peak F2 force. The greatest significant difference was shown between the first fatigued drop-landing condition and the last fatigued drop-landing condition. No significant difference was observed between genders for all GRF variables across fatigue conditions.Conclusion:A single session of repeated conditions of anaerobic muscle fatigue induced by WATs caused an initial reduction in peak F2 force followed by an increase in peak F2 force across conditions. Muscle fatigue consequently alters landing kinetics, potentially increasing the risk of injury.


2010 ◽  
Vol 19 (3) ◽  
pp. 288-300 ◽  
Author(s):  
Benjamin Henry ◽  
Todd McLoda ◽  
Carrie L. Docherty ◽  
John Schrader

Context:Peroneal reaction to sudden inversion has been determined to be too slow to overcome the joint motion. A focused plyometric training program may decrease the muscle's reaction time.Objective:To determine the effect of a 6-wk plyometric training program on peroneus longus reaction time.Design:Repeated measures.Setting:University research laboratory.Participants:48 healthy volunteers (age 20.0 ± 1.2 y, height 176.1 ± 16.9 cm, weight 74.5 ± 27.9 kg) from a large Midwestern university. Subjects were randomly assigned to either a training group or a control group.Interventions:Independent variables were group at 2 levels (training and no training) and time at 2 levels (pretest and posttest). The dependent variable was peroneal latency measured with surface electromyography. A custom-made trapdoor device capable of inverting the ankle to 30° was also used. Latency data were obtained from the time the trapdoor dropped until the peroneus longus muscle activated. Peroneal latency was measured before and after the 6-wk training period. The no-training group was instructed to maintain current activities. The training group performed a 6-wk plyometric protocol 3 times weekly. Data were examined with a repeated-measures ANOVA with 1 within-subject factor (time at 2 levels) and 1 between-subjects factor (group at 2 levels). A priori alpha level was set at P < .05.Main Outcome Measures:Pretest and posttest latency measurements (ms) were recorded for the peroneus longus muscle.Results:The study found no significant group-by-time interaction (F1,46 = 0.03, P = .87). In addition, there was no difference between the pretest and posttest values (pretest = 61.76 ± 14.81 ms, posttest = 59.24 ± 12.28 ms; P = .18) and no difference between the training and no-training groups (training group = 59.10 ± 12.18 ms, no-training group = 61.79 ± 15.18 ms; P = .43).Conclusions:Although latency measurements were consistent with previous studies, the plyometric training program did not cause significant change in the peroneus longus reaction time.


2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Joanne DiFrancisco-Donoghue ◽  
Thomas Chan ◽  
Alexandra S. Jensen ◽  
James E. B. Docherty ◽  
Rebecca Grohman ◽  
...  

Abstract Context Muscle damage and delayed onset muscle soreness (DOMS) can occur following intense exercise. Various modalities have been studied to improve blood lactate accumulation, which is a primary reason for DOMS. It has been well established that active recovery facilitates blood lactate removal more rapidly that passive recovery due to the pumping action of the muscle. The pedal pump is a manual lymphatic technique used in osteopathic manipulative medicine to increase lymphatic drainage throughout the body. Pedal pump has been shown to increase lymphatic flow and improve immunity. This may improve circulation and improve clearance of metabolites post-exercise. Objective This study compared the use of pedal pump lymphatic technique to passive supine recovery following maximal exercise. Methods 17 subjects (male n = 10, age 23 ± 3.01; female n = 7, age 24 ± 1.8), performed a maximal volume O2 test (VO2 max) using a Bruce protocol, followed by a recovery protocol using either pedal pump technique or supine passive rest for 10 min, followed by sitting for 10 min. Outcome measures included blood lactate concentration (BL), heart rate (HR), systolic blood pressure (SBP) and VO2. Subjects returned on another day to repeat the VO2 max test to perform the other recovery protocol. All outcomes were measured at rest, within 1- minute post-peak exercise, and at minutes 4, 7, 10 and 20 of the recovery protocols. A 2 × 6 repeated measures ANOVA was used to compare outcome measures (p ≤ 0.05). Results No significant differences were found in VO2, HR, or SBP between any of the recovery protocols. There was no significant difference in BL concentrations for recovery at minutes 4, 7, or 10 (p > 0.05). However, the pedal pump recovery displayed significantly lower BL concentrations at minute 20 of recovery (p = 0.04). Conclusion The pedal pump significantly decreased blood lactate concentrations following intense exercise at recovery minute 20. The use of manual lymphatic techniques in exercise recovery should be investigated further.


2017 ◽  
Vol 26 (1) ◽  
pp. 26-34 ◽  
Author(s):  
Gary B. Wilkerson ◽  
Kevin A. Simpson ◽  
Ryan A. Clark

Context:Neurocognitive reaction time has been associated with musculoskeletal injury risk, but visuomotor reaction time (VMRT) derived from tests that present greater challenges to visual stimulus detection and motor response execution may have a stronger association.Objective:To assess VMRT as a predictor of injury and the extent to which improvement may result from VMRT training.Design:Cohort study.Setting:University athletic performance center.Participants:76 National Collegiate Athletic Association Division-I FCS football players (19.5 ± 1.4 y, 1.85 ± 0.06 m, 102.98 ± 19.06 kg).Interventions:Preparticipation and postseason assessments. A subset of players who exhibited slowest VMRT in relation to the cohort’s postseason median value participated in a 6-wk training program.Main Outcome Measures:Injury occurrence was related to preparticipation VMRT, which was represented by both number of target hits in 60 s and average elapsed time between hits (ms). Receiver operating characteristic analysis identified the optimum cut point for a binary injury risk classification. A nonparametric repeated-measures analysis of ranks procedure was used to compare posttraining VMRT values for slow players who completed at least half of the training sessions (n = 15) with those for untrained fast players (n = 27).Results:A preparticipation cut point of ≤85 hits (≥705 ms) discriminated injured from noninjured players with odds ratio = 2.30 (90% confidence interval, 1.05–5.06). Slow players who completed the training exhibited significant improvement in visuomotor performance compared with baseline (standardized response mean = 2.53), whereas untrained players exhibited a small performance decrement (group × trial interaction effect, L2 = 28.74; P < .001).Conclusions:Slow VMRT appears to be an important and modifiable injury risk factor for college football players. More research is needed to refine visuomotor reaction-time screening and training methods and to determine the extent to which improved performance values can reduce injury incidence.


Safety ◽  
2020 ◽  
Vol 6 (3) ◽  
pp. 34
Author(s):  
Shi Cao ◽  
Pinyan Tang ◽  
Xu Sun

A new concept in the interior design of autonomous vehicles is rotatable or swivelling seats that allow people sitting in the front row to rotate their seats and face backwards. In the current study, we used a take-over request task conducted in a fixed-based driving simulator to compare two conditions, driver front-facing and rear-facing. Thirty-six adult drivers participated in the experiment using a within-subject design with take-over time budget varied. Take-over reaction time, remaining action time, crash, situation awareness and trust in automation were measured. Repeated measures ANOVA and Generalized Linear Mixed Model were conducted to analyze the results. The results showed that the rear-facing configuration led to longer take-over reaction time (on average 1.56 s longer than front-facing, p < 0.001), but it caused drivers to intervene faster after they turned back their seat in comparison to the traditional front-facing configuration. Situation awareness in both front-facing and rear-facing autonomous driving conditions were significantly lower (p < 0.001) than the manual driving condition, but there was no significant difference between the two autonomous driving conditions (p = 1.000). There was no significant difference of automation trust between front-facing and rear-facing conditions (p = 0.166). The current study showed that in a fixed-based simulator representing a conditionally autonomous car, when using the rear-facing driver seat configuration (where participants rotated the seat by themselves), participants had longer take-over reaction time overall due to physical turning, but they intervened faster after they turned back their seat for take-over response in comparison to the traditional front-facing seat configuration. This behavioral change might be at the cost of reduced take-over response quality. Crash rate was not significantly different in the current laboratory study (overall the average rate of crash was 11%). A limitation of the current study is that the driving simulator does not support other measures of take-over request (TOR) quality such as minimal time to collision and maximum magnitude of acceleration. Based on the current study, future studies are needed to further examine the effect of rotatable seat configurations with more detailed analysis of both TOR speed and quality measures as well as in real world driving conditions for better understanding of their safety implications.


2016 ◽  
Vol 10 (4) ◽  
pp. 64-73 ◽  
Author(s):  
Tom Motzek ◽  
Kathrin Bueter ◽  
Gesine Marquardt

Objectives: Environmental cues, such as pictures, could be helpful in improving room-finding and wayfinding abilities among older patients. The aim of this study was to identify picture categories that are preferred and easily remembered by older patients and cognitively impaired patients and which therefore might be suitable for use as environmental cues in acute care settings. Methods: Twelve pictures were presented to a sample of older patients ( n = 37). The pictures represented different categories: familiarity (familiar vs. unfamiliar), type of shot (close-up vs. wide shot), and picture content (nature vs. animal vs. urban). We tested the patients’ votes of preference and abilities to identify and immediately recall pictures. Cognitively impaired patients ( n = 14) were assessed by the abbreviated mental test and the mini mental state examination and were compared with patients without cognitive impairments ( n = 23) using a repeated measures analysis of variance. Results: The results showed a main effect of familiarity on positive vote and recall of pictures. The absence of interaction effects of familiarity and group indicated an overall impact of familiarity on the sample. Within cognitively impaired patients, a significant difference in recall of picture content between urban (20%) and animal (9%) was found. Conclusions: Pictures, which patients were able to relate to in terms of familiarity and the characteristics urban and nature, seem to be suitable for use as environmental cues. Besides functioning as such, we assume, based on literature, that pictures could further enhance the ambiance or serve as prompts for communication and interaction.


2011 ◽  
Vol 20 (4) ◽  
pp. 428-441 ◽  
Author(s):  
Beth Norris ◽  
Elaine Trudelle-Jackson

Context:The Star Excursion Balance Test (SEBT) is often used to train and assess dynamic balance and neuromuscular control. Few studies have examined hip- and thigh-muscle activation during the SEBT.Objective:To quantify hip- and thigh-muscle activity during the SEBT.Design:Repeated measures.Setting:Laboratory.Participants:22 healthy individuals, 11 men and 11 women.Methods:EMG measurements were taken as participants completed 3 trials of the anterior (A), medial (M), and posteromedial (PM) reach directions of the SEBT.Main Outcome Measures:Mean EMG data (% maximal voluntary isometric contraction) from the gluteus medius (Gmed), gluteus maximus (Gmax), and vastus medialis (VM) were measured during the eccentric phase of each SEBT reach direction. Test–retest reliability of EMG data across the 3 trials in each direction was calculated. EMG data from each muscle were compared across the 3 reach directions.Results:Test–retest reliability ranged from ICC3,1 values of .91 to .99. A 2-way repeated-measure ANOVA revealed a significant interaction between muscle activation and reach direction. One-way ANOVAs showed no difference in GMed activity between the A and M directions. GMed activity in the A and M directions was greater than in the PM direction. There was no difference in GMax and VM activity across the 3 directions.Conclusion:GMed was recruited most effectively when reaching was performed in the A and M directions. The A, M, and PM directions elicited similar patterns of muscle recruitment for the GMax and VM. During all 3 SEBT directions, VM activation exceeded the 40–60% threshold suggested for strengthening effects. GMed activity also exceeded the threshold in the M direction. GMax activation, however, was below the 40% threshold for all 3 reach directions, suggesting that performing dynamic lower extremity reaching in the A, M, and PM directions may not elicit strengthening effects for the GMax.


2015 ◽  
Vol 50 (7) ◽  
pp. 697-703 ◽  
Author(s):  
Peter K. Thain ◽  
Christopher M. Bleakley ◽  
Andrew C. S. Mitchell

Context Cryotherapy is used widely in sport and exercise medicine to manage acute injuries and facilitate rehabilitation. The analgesic effects of cryotherapy are well established; however, a potential caveat is that cooling tissue negatively affects neuromuscular control through delayed muscle reaction time. This topic is important to investigate because athletes often return to exercise, rehabilitation, or competitive activity immediately or shortly after cryotherapy. Objective To compare the effects of wet-ice application, cold-water immersion, and an untreated control condition on peroneus longus and tibialis anterior muscle reaction time during a simulated lateral ankle sprain. Design Randomized controlled clinical trial. Setting University of Hertfordshire human performance laboratory. Patients or Other Participants A total of 54 physically active individuals (age = 20.1 ± 1.5 years, height = 1.7 ± 0.07 m, mass = 66.7 ± 5.4 kg) who had no injury or history of ankle sprain. Intervention(s) Wet-ice application, cold-water immersion, or an untreated control condition applied to the ankle for 10 minutes. Main Outcome Measure(s) Muscle reaction time and muscle amplitude of the peroneus longus and tibialis anterior in response to a simulated lateral ankle sprain were calculated. The ankle-sprain simulation incorporated a combined inversion and plantar-flexion movement. Results We observed no change in muscle reaction time or muscle amplitude after cryotherapy for either the peroneus longus or tibialis anterior (P &gt; .05). Conclusions Ten minutes of joint cooling did not adversely affect muscle reaction time or muscle amplitude in response to a simulated lateral ankle sprain. These findings suggested that athletes can safely return to sporting activity immediately after icing. Further evidence showed that ice can be applied before ankle rehabilitation without adversely affecting dynamic neuromuscular control. Investigation in patients with acute ankle sprains is warranted to assess the clinical applicability of these interventions.


2017 ◽  
Vol 26 (4) ◽  
pp. 216-222 ◽  
Author(s):  
In-cheol Jeon ◽  
Oh-yun Kwon ◽  
Jong-hyuck Weon ◽  
Ui-jae Hwang ◽  
Sung-hoon Jung

Context:Prone hip extension has been recommended for strengthening the back and hip muscles. Previous studies have investigated prone hip extension conducted with subjects on the floor in the prone position. However, no study has compared 3 different table hip-extension (THE) positions in terms of the activities of the back- and hip-joint muscles with lumbopelvic motion.Objective:To identify more effective exercises for strengthening the gluteus maximus (GM) by comparing 3 different exercises (THE alone, THE with the abdominal drawing-in maneuver [THEA], and THEA with chair support under the knee [THEAC]) based on electromyographic muscle activity and pelvic compensation.Design:Repeated-measure within-subject intervention.Setting:University research laboratory.Participants:16 healthy men.Main Outcome Measures:Surface electromyography (EMG) was used to obtain data on the GM, erector spinae (ES), multifidus, biceps femoris (BF), and semitendinosus (ST). Pelvic compensation was monitored using an electromagnetic motion-tracking device. Exertion during each exercise was recorded. Any significant difference in electromyographic muscle activity and pelvic motion among the 3 conditions (THE vs THEA vs THEAC) was assessed using a 1-way repeated-measures analysis of variance (ANOVA) with Bonferroni post hoc test.Results:The muscle activities recorded by EMG differed significantly among the 3 exercises (P < .01). GM activity was increased significantly during THEAC (P < .01). There was a significant difference in lumbopelvic kinematics in terms of anterior tilting (F = 19.49, P < .01) and rotation (F= 27.38, P < .01) among the 3 exercises.Conclusions:The THEAC exercise was the most effective for strengthening the GM without overactivity of the ES, BF, and ST muscles and lumbopelvic compensation compared with THE and THEA.


2020 ◽  
Vol In Press (In Press) ◽  
Author(s):  
Nesa Paryab ◽  
Morteza Taheri ◽  
Kahdijeh Irandoust ◽  
Masoud Mirmoezzi

Background: Melatonin is one of the Supplements used to treat sleep problems such as insomnia and jet lag. Objectives: Since sleep deprivation may affect athletic performance, the aim of this study was to investigate the effect of melatonin on neurological function and maintenance of physical and motor fitness in collegiate student-athletes following sleep deprivation. Methods: Ten collegiate student-athletes participated in randomized, double‐blind crossover trial with placebo control. Subjects were divided into six experimental groups: without sleep deprivation (WSD), 4 hours sleep deprivation (4HSD) and 24 hours sleep deprivation (24HSD) with melatonin (MEL) or placebo (PLA). WSD were allowed to sleep eight hours per night. Six milligrams of melatonin was administered 30 min before the training protocols. Training protocols included the Wingate Anaerobic test, Good Balance test, Vienna reaction time with the Stroop test. Data were analyzed using repeated measures ANOVA. Significant difference was set at P ≤ 0.05. Results: Six mg/day of MEL 30 min before training had no significant effect on anaerobic power, balance and reaction time in collegiate student-athletes WSD (P > 0.05). Although, 4HSD and 24HSD negatively affected balance function, MEL reduced its negative effects. Furthermore, 24HSD decrease neurological and physical performance in collegiate student-athletes and MEL improved anaerobic power and reaction time in collegiate student-athletes (P < 0.05). Conclusions: Pre-training MEL supplementation would alleviate neurological, physical and motor performance impairment in collegiate student-athletes following sleep deprivation. MEL appears to be more effective in athletes with longer sleep deprivation.


Sign in / Sign up

Export Citation Format

Share Document