scholarly journals Fine mapping of the major QTLs for biochemical variation of sulforaphane in broccoli florets using a DH population

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhansheng Li ◽  
Yumei Liu ◽  
Suxia Yuan ◽  
Fengqing Han ◽  
Zhiyuan Fang ◽  
...  

AbstractGlucoraphanin is a major secondary metabolite found inBrassicaceaevegetables, especially broccoli, and its degradation product sulforaphane plays an essential role in anticancer. The fine mapping of sulforaphane metabolism quantitative trait loci (QTLs) in broccoli florets is necessary for future marker-assisted selection strategies. In this study, we utilized a doubled haploid population consisting of 176 lines derived from two inbred lines (86,101 and 90,196) with significant differences in sulforaphane content, coupled with extensive genotypic and phenotypic data from two independent environments. A linkage map consisting of 438 simple sequence repeats markers was constructed, covering a length of 1168.26 cM. A total of 18 QTLs for sulforaphane metabolism in broccoli florets were detected, 10 were detected in 2017, and the other 8 were detected in 2018. The LOD values of all QTLs ranged from 3.06 to 14.47, explaining 1.74–7.03% of the biochemical variation between two years. Finally, 6 QTLs (qSF-C3-1,qSF-C3-2,qSF-C3-3,qSF-C3-5,qSF-C3-6andqSF-C7) were stably detected in more than one environment, each accounting for 4.54–7.03% of the phenotypic variation explained (PVE) and a total of 30.88–34.86% of PVE. Our study provides new insights into sulforaphane metabolism in broccoli florets and marker-assisted selection breeding inBrassica oleraceacrops.

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Gyu-Ho Lee ◽  
In-Kyu Kang ◽  
Kyung-Min Kim

The critical evolutionary step during domestication of major cereals was elimination of seed shattering because the easy-to-shatter trait in wild relatives results in a severe reduction in yield. In this study, we analyzed the QTLs associated with shattering employing a high-density genetic map in doubled haploid (DH) population of rice (Oryza sativaL.). A genetic linkage map was generated with 217 microsatellite markers spanning 2082.4 cM and covering 12 rice chromosomes with an average interval of 9.6 cM between markers based on 120 DHLs derived from a cross between Cheongcheong indica type cultivar and Nagdong japonica type cultivar. In the QTL analysis, five QTLs pertaining to the breaking tensile strength (BTS) were detected in 2013 and 2015. Two regions of the QTLs related to BTS on chromosome 1 and chromosome 6 were detected. Several important genes are distributed in 1 Mbp region of the QTL on chromosome 6 and they are related to the formation of abscission layer. We decide to name this QTLqSh6and the candidate genes in theqSh6region can be employed usefully in further research for cloning.


Genome ◽  
2011 ◽  
Vol 54 (6) ◽  
pp. 517-527 ◽  
Author(s):  
Bahram Heidari ◽  
Badraldin Ebrahim Sayed-Tabatabaei ◽  
Ghodratollah Saeidi ◽  
Michael Kearsey ◽  
Kazuhiro Suenaga

A doubled haploid (DH) population derived from a cross between the Japanese cultivar ‘Fukuho-kumogi’ and the Israeli wheat line ‘Oligoculm’ was used to map genome regions involved in the expression of grain yield, yield components, and spike features in wheat (Triticum aestivum L). A total of 371 markers (RAPD, SSR, RFLP, AFLP, and two morphological traits) were used to construct the linkage map that covered 4190 cM of wheat genome including 28 linkage groups. The results of composite interval mapping for all studied traits showed that some of the quantitative trait loci (QTL) were stable over experiments conducted in 2004 and 2005. The major QTL located in the Hair–Xpsp2999 interval on chromosome 1A controlled the expression of grains/spike (R2 = 12.9% in 2004 and 22.4% in 2005), grain weight/spike (R2 = 21.4% in 2004 and 15.8% in 2005), and spike number (R2 = 15.6% in 2004 and 5.4% in 2005). The QTL for grain yield located on chromosomes 6A, 6B, and 6D totally accounted for 27.2% and 31.7% of total variation in this trait in 2004 and 2005, respectively. Alleles inherited from ‘Oligoculm’ increased the length of spikes and had decreasing effects on spike number. According to the data obtained in 2005, locus Xgwm261 was associated with a highly significant spike length QTL (R2 = 42.33%) and also the major QTL for spikelet compactness (R2 = 26.1%).


Genome ◽  
2006 ◽  
Vol 49 (7) ◽  
pp. 855-859 ◽  
Author(s):  
T L Friesen ◽  
J D Faris ◽  
Z Lai ◽  
B J Steffenson

Net blotch, caused by Pyrenophora teres, is one of the most economically important diseases of barley worldwide. Here, we used a barley doubled-haploid population derived from the lines SM89010 and Q21861 to identify major quantitative trait loci (QTLs) associated with seedling resistance to P. teres f. teres (net-type net blotch (NTNB)) and P. teres f. maculata (spot-type net blotch (STNB)). A map consisting of simple sequence repeat (SSR) and amplified fragment length polymorphism (AFLP) markers was used to identify chromosome locations of resistance loci. Major QTLs for NTNB and STNB resistance were located on chromosomes 6H and 4H, respectively. The 6H locus (NTNB) accounted for as much as 89% of the disease variation, whereas the 4H locus (STNB resistance) accounted for 64%. The markers closely linked to the resistance gene loci will be useful for marker-assisted selection.Key words: disease resistance, Drechslera teres, molecular markers.


Genome ◽  
1991 ◽  
Vol 34 (6) ◽  
pp. 918-922 ◽  
Author(s):  
C. C. Schön ◽  
P. M. Hayes ◽  
T. K. Blake ◽  
S. J. Knapp

Segregation distortion and the consequences of gametophytic selection were assessed in a winter × spring barley cross by comparing segregation of enzyme, storage protein, DNA, and morphological markers in three populations derived from the same cross: a control F2 (F2C), a doubled-haploid (DH) population, and an F2 derived from F1 plants self-pollinated at 10 °C (F2T). Segregation distortion was present in the F2T and the doubled-haploid population. Based on a comparison of the F2C and the F2T, gametophytic selection as a consequence of self-pollination at 10 °C was operative on chromosome 7 in regions linked to Rrn2. Segregation distortion in favor of the winter parent was found in the doubled-haploid population. There were significant deviations from expected segregation ratios at two loci, but only at one of the loci was the gene number significantly different from the F2C. Despite segregation distortion, the doubled-haploid population should be suitable for linkage analyses, as estimates of recombination based on F2 and doubled-haploid data were in close agreement.Key words: Hordeum vulgare, segregation distortion, doubled haploids, gametophytic selection, cold tolerance.


Genetics ◽  
2000 ◽  
Vol 156 (4) ◽  
pp. 1997-2005 ◽  
Author(s):  
L Ramsay ◽  
M Macaulay ◽  
S degli Ivanissevich ◽  
K MacLean ◽  
L Cardle ◽  
...  

AbstractA total of 568 new simple sequence repeat (SSR)-based markers for barley have been developed from a combination of database sequences and small insert genomic libraries enriched for a range of short simple sequence repeats. Analysis of the SSRs on 16 barley cultivars revealed variable levels of informativeness but no obvious correlation was found with SSR repeat length, motif type, or map position. Of the 568 SSRs developed, 242 were genetically mapped, 216 with 37 previously published SSRs in a single doubled-haploid population derived from the F1 of an interspecific cross between the cultivar Lina and Hordeum spontaneum Canada Park and 26 SSRs in two other mapping populations. A total of 27 SSRs amplified multiple loci. Centromeric clustering of markers was observed in the main mapping population; however, the clustering severity was reduced in intraspecific crosses, supporting the notion that the observed marker distribution was largely a genetical effect. The mapped SSRs provide a framework for rapidly assigning chromosomal designations and polarity in future mapping programs in barley and a convenient alternative to RFLP for aligning information derived from different populations. A list of the 242 primer pairs that amplify mapped SSRs from total barley genomic DNA is presented.


Genome ◽  
1998 ◽  
Vol 41 (2) ◽  
pp. 193-198 ◽  
Author(s):  
Lishuang Shen ◽  
Lihuang Zhu

Direct PCR-based genetic mapping of telomeric repeat associated sequences (TASs) was achieved using a RAPD primer mediated asymmetric PCR method. Twenty-two TAS loci were mapped in a rice doubled haploid population derived from a cross between an indica variety (Zhaiyeqing8) and a japonica variety (Jingxi17). Of these, 11 loci were mapped to the most distal position of seven chromosome arms and lengthened the linkage groups by 7.4-22.6 cM, five were mapped to the approximate positions of the centromeric regions, and six were mapped to other interstitial chromosomal regions.Key words: rice, Oryza sativa L., genetic mapping, telomeric repeat, telomeric repeat associated sequences, RAPD primer mediated PCR.


2018 ◽  
Vol 97 (5) ◽  
pp. 1389-1406 ◽  
Author(s):  
Farshad Fattahi ◽  
Barat Ali Fakheri ◽  
Mahmood Solouki ◽  
Christian Möllers ◽  
Abbas Rezaizad

Sign in / Sign up

Export Citation Format

Share Document