scholarly journals The influence of Coulomb interaction screening on the excitons in disordered two-dimensional insulators

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
E. V. Kirichenko ◽  
V. A. Stephanovich

AbstractWe study the joint effect of disorder and Coulomb interaction screening on the exciton spectra in two-dimensional (2D) structures. These can be van der Waals structures or heterostructures of organic (polymeric) semiconductors as well as inorganic substances like transition metal dichalcogenides. We consider 2D screened hydrogenic problem with Rytova–Keldysh interaction by means of so-called fractional Scrödinger equation. Our main finding is that above synergy between screening and disorder either destroys the exciton (strong screening) or promote the creation of a bound state, leading to its collapse in the extreme case. Our second finding is energy levels crossing, i.e. the degeneracy (with respect to index $$\mu $$ μ ) of the exciton eigenenergies at certain discrete value of screening radius. Latter effects may also be related to the quantum manifestations of chaotic exciton behavior in above 2D semiconductor structures. Hence, they should be considered in device applications, where the interplay between dielectric screening and disorder is important.

ACS Nano ◽  
2021 ◽  
Author(s):  
Miao Zhang ◽  
Martina Lihter ◽  
Tzu-Heng Chen ◽  
Michal Macha ◽  
Archith Rayabharam ◽  
...  

Author(s):  
Sai Manoj Gali ◽  
David Beljonne

Transition Metal Dichalcogenides (TMDCs) are emerging as promising two-dimensional (2D) materials. Yet, TMDCs are prone to inherent defects such as chalcogen vacancies, which are detrimental to charge transport. Passivation of...


ACS Nano ◽  
2021 ◽  
Author(s):  
Hope Bretscher ◽  
Zhaojun Li ◽  
James Xiao ◽  
Diana Yuan Qiu ◽  
Sivan Refaely-Abramson ◽  
...  

2018 ◽  
Vol 47 (17) ◽  
pp. 6845-6888 ◽  
Author(s):  
Simone Bertolazzi ◽  
Marco Gobbi ◽  
Yuda Zhao ◽  
Claudia Backes ◽  
Paolo Samorì

A variety of molecular chemistry approaches are currently investigated for tailoring the physico-chemical properties of ultrathin transition metal dichalcogenides towards novel hybrid multifunctional materials and devices.


Sign in / Sign up

Export Citation Format

Share Document