scholarly journals Mistaken identity may explain why male sea snakes (Aipysurus laevis, Elapidae, Hydrophiinae) “attack” scuba divers

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tim P. Lynch ◽  
Ross A. Alford ◽  
Richard Shine

AbstractScuba-divers on tropical coral-reefs often report unprovoked “attacks” by highly venomous Olive sea snakes (Aipysurus laevis). Snakes swim directly towards divers, sometimes wrapping coils around the diver’s limbs and biting. Based on a focal animal observation study of free-ranging Olive sea snakes in the southern Great Barrier Reef, we suggest that these “attacks” are misdirected courtship responses. Approaches to divers were most common during the breeding season (winter) and were by males rather than by female snakes. Males also made repeated approaches, spent more time with the diver, and exhibited behaviours (such as coiling around a limb) also seen during courtship. Agitated rapid approaches by males, easily interpreted as “attacks”, often occurred after a courting male lost contact with a female he was pursuing, after interactions between rival males, or when a diver tried to flee from a male. These patterns suggest that “attacks” by sea snakes on humans result from mistaken identity during sexual interactions. Rapid approaches by females occurred when they were being chased by males. Divers that flee from snakes may inadvertently mimic the responses of female snakes to courtship, encouraging males to give chase. To prevent escalation of encounters, divers should keep still and avoid retaliation.

2010 ◽  
Vol 61 (9) ◽  
pp. 999 ◽  
Author(s):  
C. Cvitanovic ◽  
A. S. Hoey

The removal of macroalgae by herbivores is fundamental to the long-term persistence of coral reefs. Variation in macroalgal browsing has been documented across a range of spatial scales on coral reefs; however, few studies have examined the factors that influence within-habitat rates of herbivory. The aim of the present study was to quantify herbivory on two species of Sargassum across three bays on an inshore island in the central Great Barrier Reef (GBR), and to determine whether these removal rates were related to the benthic composition or herbivorous fish communities. Removal rates of Sargassum differed significantly among bays, with removal rates in the southern bay (66.9–83.0% per 3 h) being approximately double that of the two other bays (29.2–38.5% per 3 h). The removal rates displayed a direct relationship with the benthic community structure, in particular the cover of macroalgae and live plate corals. Although it is difficult to determine whether these relationships are related to the availability of food resources or the structural complexity of the substratum, they highlight the potential influence of benthic composition on ecological processes. Quantifying and understanding the drivers of herbivory across a range of spatial scales is essential to the future management of coral reefs.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Katharina E. Fabricius ◽  
Craig Neill ◽  
Erik Van Ooijen ◽  
Joy N. Smith ◽  
Bronte Tilbrook

Abstract Coral reefs are highly sensitive to ocean acidification due to rising atmospheric CO2 concentrations. We present 10 years of data (2009–2019) on the long-term trends and sources of variation in the carbon chemistry from two fixed stations in the Australian Great Barrier Reef. Data from the subtropical mid-shelf GBRWIS comprised 3-h instrument records, and those from the tropical coastal NRSYON were monthly seawater samples. Both stations recorded significant variation in seawater CO2 fugacity (fCO2), attributable to seasonal, daytime, temperature and salinity fluctuations. Superimposed over this variation, fCO2 progressively increased by > 2.0 ± 0.3 µatm year−1 at both stations. Seawater temperature and salinity also increased throughout the decade, whereas seawater pH and the saturation state of aragonite declined. The decadal upward fCO2 trend remained significant in temperature- and salinity-normalised data. Indeed, annual fCO2 minima are now higher than estimated fCO2 maxima in the early 1960s, with mean fCO2 now ~ 28% higher than 60 years ago. Our data indicate that carbonate dissolution from the seafloor is currently unable to buffer the Great Barrier Reef against ocean acidification. This is of great concern for the thousands of coral reefs and other diverse marine ecosystems located in this vast continental shelf system.


2020 ◽  
Vol 12 (11) ◽  
pp. 4676
Author(s):  
M. Rut Jiménez-Liso ◽  
Manuela González-Herrera ◽  
Isabel Banos-González

The use of socio-ecological controversies, such as global warming, in classrooms has been suggested to increase students’ awareness about complex issues, although detailed analysis of their implementation in classrooms are still scarce. This research shows a model-based inquiry approach (MBI) instructional sequence, using scientific news as a trigger, aimed at addressing a global problem on a real socio-ecological system: the effect of global warming on the Great Barrier Reef. Its implementation in a lower secondary school classroom allowed the assessment of the effectiveness of the instructional sequence designed, based on students’ perception of what secondary school students have learned and felt. Results show that the MBI instructional sequence seems to have favored the mobilization of students’ alternative conceptions about global warming, coral reefs, and symbiotic relationships. In addition, it contributed to increasing the students’ awareness of the problem of global warming and its effects on an essential socio-ecological system, such as coral reefs.


2000 ◽  
Vol 21 (3) ◽  
pp. 289-300 ◽  
Author(s):  
Glen Burns ◽  
Harold Heatwole

AbstractThe olive sea snake, Aipysurus laevis (Lacépède) grows at a rate of 0.22-0.95 cm/month, with young animals growing faster than older ones. Males reach sexual maturity in their third year and females in their fourth or fifth year. There is sexual dimorphism in size, with females larger than males; at snout-vent lengths greater than 80 cm, females are heavier than males of equivalent length. Small snakes were uncommon. Apparent sexratio favours males in winter but moves toward equality or even a preponderance of females in summer, probably reflecting changes in reproductive behaviour. Numbers of snakes are approximately 0.70-0.86 snakes per metre of reef edge. Olive sea snakes live to about 15 years or older.


PLoS ONE ◽  
2020 ◽  
Vol 15 (10) ◽  
pp. e0239978
Author(s):  
Mark Edward Baird ◽  
Rebecca Green ◽  
Ryan Lowe ◽  
Mathieu Mongin ◽  
Elodie Bougeot

Sign in / Sign up

Export Citation Format

Share Document