scholarly journals Protein disulphide isomerase (PDI) is protective against amyotrophic lateral sclerosis (ALS)-related mutant Fused in Sarcoma (FUS) in in vitro models

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
S. Parakh ◽  
E. R. Perri ◽  
M. Vidal ◽  
J. Sultana ◽  
S. Shadfar ◽  
...  

AbstractMutations in Fused in Sarcoma (FUS) are present in familial and sporadic cases of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). FUS is localised in the nucleus where it has important functions in DNA repair. However, in ALS/FTD, mutant FUS mislocalises from the nucleus to the cytoplasm where it forms inclusions, a key pathological hallmark of neurodegeneration. Mutant FUS also inhibits protein import into the nucleus, resulting in defects in nucleocytoplasmic transport. Fragmentation of the neuronal Golgi apparatus, induction of endoplasmic reticulum (ER) stress, and inhibition of ER-Golgi trafficking are also associated with mutant FUS misfolding in ALS. Protein disulphide isomerase (PDI) is an ER chaperone previously shown to be protective against misfolding associated with mutant superoxide dismutase 1 (SOD1) and TAR DNA-binding protein-43 (TDP-43) in cellular and zebrafish models. However, a protective role against mutant FUS in ALS has not been previously described. In this study, we demonstrate that PDI is protective against mutant FUS. In neuronal cell line and primary cultures, PDI restores defects in nuclear import, prevents the formation of mutant FUS inclusions, inhibits Golgi fragmentation, ER stress, ER-Golgi transport defects, and apoptosis. These findings imply that PDI is a new therapeutic target in FUS-associated ALS.

2016 ◽  
Vol 18 (1-2) ◽  
pp. 126-133 ◽  
Author(s):  
Jennifer A. Fifita ◽  
Kelly L. Williams ◽  
Vinod Sundaramoorthy ◽  
Emily P. Mccann ◽  
Garth A. Nicholson ◽  
...  

2010 ◽  
Vol 25 (3) ◽  
pp. 281-289 ◽  
Author(s):  
Juliana Milani Scorisa ◽  
Tatiana Duobles ◽  
Gabriela Pintar de Oliveira ◽  
Jessica Ruivo Maximino ◽  
Gerson Chadi

PURPOSE: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that displays a rapid evolution. Current treatments have failed to revert clinical symptoms because the mechanisms involved in the death of motoneuron are still unknown. Recent publications have put non-neuronal cells, particularly, astrocyte and microglia, in the scenario of pathophisiology of the disease. Animal models for ALS, particularly transgenic mice expressing the human SOD1 gene with a G93A mutation (hSOD1), are available and display the phenotype of the disease at cellular and clinical levels. However, it is a lack of detailed information regarding the methods to study the disease in vitro to better understand the contribution of non-neuronal cells in the onset and progression of the pathology. METHODS: Colonies of Swiss mice and transgenic mice expressing hSOD1 mutation as well as non-transgenic controls (wild-type) were amplified after a genotyping evaluation. Disease progression was followed behaviorally and mortality was registered. Highly purified primary cultures of astrocytes and microglia from mouse spinal cord were obtained. Cells were identified by means of GFAP and CD11B immunocytochemistry. The purity of astroglial and microglial cell cultures was also accompanied by means of Western blot and RT-PCR analyses employing a number of markers. RESULTS: The disease onset was about 105 days and the majority of transgenic mice displayed the disease symptoms by 125 days of age and reached the endpoint 20 days later. A substantial motor weakens was registered in the transgenic mice compared to wild-type at the end point. Immunocytochemical, biochemical and RT-PCR analyses demonstrated a highly purified primary cultures of spinal cord astrocytes and microglia. CONCLUSION: It is possible to achieve highly purified primary cultures of spinal cord astrocytes and microglia to be employed in cellular and molecular analyses of the influence of such non-neuronal cells in the pathophysiology of ALS.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Adam K. Walker ◽  
Julie D. Atkin

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterised by the progressive loss of motor neurons, leading to paralysis and death within several years of onset. Although protein misfolding is a key feature of ALS, the upstream triggers of disease remain elusive. Recently, endoplasmic reticulum (ER) stress was identified as an early and central feature in ALS disease models as well as in human patient tissues, indicating that ER stress could be an important process in disease pathogenesis. One important chaperone induced by ER stress is protein disulphide isomerase (PDI), which is both upregulated and posttranslationally inhibited by S-nitrosylation in ALS. In this paper, we present evidence from studies of genetics, model organisms, and patient tissues which indicate an active role for PDI and ER stress in ALS disease processes.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Junmei Wang ◽  
Lydia Tierney ◽  
Ranjeet Mann ◽  
Thomas Lonsway ◽  
Chandler L. Walker

AbstractAmyotrophic lateral sclerosis (ALS) is the most common motor neuron (MN) disease, with no present cure. The progressive loss of MNs is the hallmark of ALS. We have previously shown the therapeutic effects of the phosphatase and tensin homolog (PTEN) inhibitor, potassium bisperoxo (picolinato) vanadium (bpV[pic]), in models of neurological injury and demonstrated significant neuroprotective effects on MN survival. However, accumulating evidence suggests PTEN is detrimental for MN survival in ALS. Therefore, we hypothesized that treating the mutant superoxide dismutase 1 G93A (mSOD1G93A) mouse model of ALS during motor neuron degeneration and an in vitro model of mSOD1G93A motor neuron injury with bpV(pic) would prevent motor neuron loss. To test our hypothesis, we treated mSOD1G93A mice intraperitoneally daily with 400 μg/kg bpV(pic) from 70 to 90 days of age. Immunolabeled MNs and microglial reactivity were analyzed in lumbar spinal cord tissue, and bpV(pic) treatment significantly ameliorated ventral horn motor neuron loss in mSOD1G93A mice (p = 0.003) while not significantly altering microglial reactivity (p = 0.701). Treatment with bpV(pic) also significantly increased neuromuscular innervation (p = 0.018) but did not affect muscle atrophy. We also cultured motor neuron-like NSC-34 cells transfected with a plasmid to overexpress mutant SOD1G93A and starved them in serum-free medium for 24 h with and without bpV(pic) and downstream inhibitor of Akt signaling, LY294002. In vitro, bpV(pic) improved neuronal viability, and Akt inhibition reversed this protective effect (p < 0.05). In conclusion, our study indicates systemic bpV(pic) treatment could be a valuable neuroprotective therapy for ALS.


F1000Research ◽  
2015 ◽  
Vol 4 ◽  
pp. 119 ◽  
Author(s):  
Bhavin Parekh

Amyotrophic lateral sclerosis (ALS) is a dreadful, devastating and incurable motor neuron disease. Aetiologically, it is a multigenic, multifactorial and multiorgan disease. Despite intense research, ALS pathology remains unexplained. Following extensive literature review, this paper posits a new integrative explanation. This framework proposes that ammonia neurotoxicity is a main player in ALS pathogenesis. According to this explanation, a combination of impaired ammonia removal— mainly because of impaired hepatic urea cycle dysfunction—and increased ammoniagenesis— mainly because of impaired glycolytic metabolism in fast twitch skeletal muscle—causes chronic hyperammonia in ALS. In the absence of neuroprotective calcium binding proteins (calbindin, calreticulin and parvalbumin), elevated ammonia—a neurotoxin—damages motor neurons. Ammonia-induced motor neuron damage occurs through multiple mechanisms such as macroautophagy-endolysosomal impairment, endoplasmic reticulum (ER) stress, CDK5 activation, oxidative/nitrosative stress, neuronal hyperexcitability and neuroinflammation. Furthermore, the regional pattern of calcium binding proteins’ loss, owing to either ER stress and/or impaired oxidative metabolism, determines clinical variability of ALS. Most importantly, this new framework can be generalised to explain other neurodegenerative disorders such as Huntington’s disease and Parkinsonism.


Sign in / Sign up

Export Citation Format

Share Document