scholarly journals A life cycle assessment of reprocessing face masks during the Covid-19 pandemic

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bart van Straten ◽  
S. Ligtelijn ◽  
L. Droog ◽  
E. Putman ◽  
J. Dankelman ◽  
...  

AbstractThe Covid-19 pandemic led to threatening shortages in healthcare of medical products such as face masks. Due to this major impact on our healthcare society an initiative was conducted between March and July 2020 for reprocessing of face masks from 19 different hospitals. This exceptional opportunity was used to study the costs impact and the carbon footprint of reprocessed face masks relative to new disposable face masks. The aim of this study is to conduct a Life Cycle Assessment (LCA) to assess and compare the climate change impact of disposed versus reprocessed face masks. In total 18.166 high quality medical FFP2 face masks were reprocessed through steam sterilization between March and July 2020. Greenhouse gas emissions during production, transport, sterilization and end-of-life processes were assessed. The background life cycle inventory data were retrieved from the ecoinvent database. The life cycle impact assessment method ReCiPe was used to translate emissions into climate change impact. The cost analysis is based on actual sterilization as well as associated costs compared to the prices of new disposable face masks. A Monte Carlo sampling was used to propagate the uncertainty of different inputs to the LCA results. The carbon footprint appears to be 58% lower for face masks which were reused for five times compared to new face masks which were used for one time only. The sensitivity analysis indicated that the loading capacity of the autoclave and rejection rate of face masks has a large influence on the carbon footprint. The estimated cost price of a reprocessed mask was €1.40 against €1.55. The Life Cycle Assessment demonstrates that reprocessed FFP2 face masks from a circular economy perspective have a lower climate change impact on the carbon footprint than new face masks. For policymakers it is important to realize that the carbon footprint of medical products such as face masks may be reduced by means of circular economy strategies. This study demonstrated a lower climate change impact and lower costs when reprocessing and reusing disposable face masks for five times. Therefore, this study may serve as an inspiration for investigating reprocessing of other medical products that may become scarce. Finally, this study advocates that circular design engineering principles should be taken into account when designing medical devices. This will lead to more sustainable products that have a lower carbon footprint and may be manufactured at lower costs.

2021 ◽  
Author(s):  
Bart van Straten ◽  
Sharina Ligtelijn ◽  
Lieke Droog ◽  
Esther Putman ◽  
Jenny Dankelman ◽  
...  

Abstract Introduction/background: The COVID-19 pandemic has led to threatening shortages in the healthcare of medical products such as face masks. Due to this major impact on our healthcare society, an initiative was conducted between March and July 2020 for reprocessing face masks from 19 different hospitals. This exceptional opportunity was used to study the cost impact and the effects of the CO2 footprint of reprocessed face masks relative to new disposable face masks.Aim: The aim of this study is to conduct a life cycle assessment (LCA) to assess and compare the environmental impact of disposed versus reprocessed face masks.Methods: In total, 18,166 high-quality medical FFP2 face masks were reprocessed through steam sterilization between March and July 2020. CO2 emissions equivalent (kg CO2 eq) and other impact categories, such as water consumption during production, transport, sterilisation and end-of-life processes, were assessed. A Monte Carlo model was used to predict the sensitivity of different factors in the whole process on the kg CO2 eq.Results: The average kg CO2 eq appears to be 42% lower for reprocessed face masks based on a rejection rate of 20% than new ones. The sensitivity analysis indicated that the loading capacity of the autoclave and rejection rate of face masks have a large influence on kg CO2 eq. The estimated cost price of a reprocessed mask was €1,40 against €1.55.Discussion: The life cycle assessment (LCA) demonstrates that reprocessed FFP2 face masks from a circular economy perspective have a lower environmental impact on kg CO2 eq and water usage than new face masks. For policymakers, it is important to realize that the CO2 footprint of medical products such as face masks may be reduced by means of circular economy strategies.Conclusion: This study demonstrated a lower environmental impact and financial burden for reprocessed medical face masks than for new face masks without compromising qualifications. Therefore, this study may serve as an inspiration for investigating the reprocessing of other medical products that may become scarce. Finally, this study advocates that circular design engineering principles should be taken into account when designing medical devices. This may lead to more sustainable products that require less CO2, have less water consumption and lower costs.


Author(s):  
Samantha J. Werth ◽  
Alice S. Rocha ◽  
James W. Oltjen ◽  
Ermias Kebreab ◽  
Frank M. Mitloehner

Abstract Purpose A life cycle assessment was performed for the production of a total mixed ration (TMR) fed to finishing feedlot cattle in California, USA. The goal was to determine the climate change impact of the feed supply chain associated with the production of 1 kg finishing TMR (kg CO2e/kg TMR). A secondary goal was to compare the climate change impact of feed versus finished beef (kg CO2e/kg live weight). Methods The TMR was based on feeds commonly fed to finishing cattle in California. The Livestock Environmental Assessment and Performance Partnership (LEAP) guidelines were followed for inventory data collection. System boundaries included the production of crops and feed additives, transportation of TMR components, and compound feed production. Data were sourced from national databases and Ecoinvent™ unit process data. Three scenarios were assessed as a result of allocation at the transportation step: Scenario A (100% empty return load); Scenario B (50% empty return load): and Scenario C (0% empty return load). Energy, mass, and economic allocation, and system expansion of dried distillers grain solubles (DDGS) were assessed for sensitivity analysis. Total feedlot emission data from Stackhouse-Lawson et al. (2012) were used to compare to impacts of TMR production. Results Total emissions were determined to be 0.630 kg CO2e/kg TMR for Scenario A, 0.576 kg CO2e/kg TMR for Scenario B, and 0.521 kg CO2e/kg TMR for Scenario C. Corn production, transportation, and liquid premix production were primary contributors to the life cycle impacts of TMR production. Mass-based allocation of DDGS was found to have the most significant effect on overall impacts of the finishing TMR, with a 42% increase in life cycle emissions compared to other allocation methods. For Scenario A, feed used in Angus feedlot production contributed to 76% of total Angus feedlot emissions. Additionally, feed used in Holstein feedlot production contributed to 58% of total Holstein feedlot emissions. Conclusions and recommendations The present study demonstrates a need to better assess the feed supply chain of feedlot beef production in order to accurately identify areas that have the most significant impacts on overall emissions. This may aid in minimizing impacts associated with feed production and, by extension, beef production. The present study may also serve to inform future decisions for improvements or alterations of the LEAP guidelines.


2014 ◽  
Vol 18 (8) ◽  
pp. 3301-3317 ◽  
Author(s):  
M. Honti ◽  
A. Scheidegger ◽  
C. Stamm

Abstract. Climate change impact assessments have become more and more popular in hydrology since the middle 1980s with a recent boost after the publication of the IPCC AR4 report. From hundreds of impact studies a quasi-standard methodology has emerged, to a large extent shaped by the growing public demand for predicting how water resources management or flood protection should change in the coming decades. The "standard" workflow relies on a model cascade from global circulation model (GCM) predictions for selected IPCC scenarios to future catchment hydrology. Uncertainty is present at each level and propagates through the model cascade. There is an emerging consensus between many studies on the relative importance of the different uncertainty sources. The prevailing perception is that GCM uncertainty dominates hydrological impact studies. Our hypothesis was that the relative importance of climatic and hydrologic uncertainty is (among other factors) heavily influenced by the uncertainty assessment method. To test this we carried out a climate change impact assessment and estimated the relative importance of the uncertainty sources. The study was performed on two small catchments in the Swiss Plateau with a lumped conceptual rainfall runoff model. In the climatic part we applied the standard ensemble approach to quantify uncertainty but in hydrology we used formal Bayesian uncertainty assessment with two different likelihood functions. One was a time series error model that was able to deal with the complicated statistical properties of hydrological model residuals. The second was an approximate likelihood function for the flow quantiles. The results showed that the expected climatic impact on flow quantiles was small compared to prediction uncertainty. The choice of uncertainty assessment method actually determined what sources of uncertainty could be identified at all. This demonstrated that one could arrive at rather different conclusions about the causes behind predictive uncertainty for the same hydrological model and calibration data when considering different objective functions for calibration.


Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2916
Author(s):  
Jérôme Payet ◽  
Titouan Greffe

Worldwide electricity consumption increases by 2.6% each year. Greenhouse gas emissions due to electricity production raise by 2.1% per year on average. The development of efficient low-carbon-footprint renewable energy systems is urgently needed. CPVMatch investigates the feasibility of mirror or lens-based High Concentration Photovoltaic (HCPV) systems. Thanks to innovative four junction solar cells, new glass coatings, Position Sensitive Detectors (PSD), and DC/DC converters, it is possible to reach concentration levels higher than 800× and a module efficiency between 36.7% and 41.6%. From a circular economy’s standpoint, the use of concentration technologies lowers the need in active material, increases recyclability, and reduces the risk of material contamination. By using the Life Cycle Assessment method, it is demonstrated that HCPV presents a carbon footprint ranking between 16.4 and 18.4 g CO2-eq/kWh. A comparison with other energy means for 16 impact categories including primary energy demand and particle emissions points out that the environmental footprint of HCPV is typically 50 to 100 times lower than fossil fuels footprint. HCPV’s footprint is also three times lower than that of crystalline photovoltaic solutions and is close to the environmental performance of wind power and hydropower.


2019 ◽  
Vol 21 (10) ◽  
pp. 2635-2655 ◽  
Author(s):  
Jhuma Sadhukhan ◽  
Siddharth Gadkari ◽  
Elias Martinez-Hernandez ◽  
Kok Siew Ng ◽  
Mobolaji Shemfe ◽  
...  

Highly efficient macroalgae based chemical factories and environmental protection have been comprehensively studied for the first time to displace fossil resources to mitigate climate change impact.


Author(s):  
Abigail R. Clarke-Sather ◽  
Saleh Mamun ◽  
Daniel Nolan ◽  
Patrick Schoff ◽  
Matthew Aro ◽  
...  

Abstract Life cycle assessment (LCA) is a well-established tool for measuring environmental effects of existing technology. While the most recent LCA research has focused on environmental impacts, in particular on the effects of climate change, there is growing interest in how LCA can be used prospectively. A 2019 workshop in Duluth, Minnesota sought to define the needs and priorities of prospective life cycle assessment from a perspective that considers diverse viewpoints. In that workshop, participants outlined frameworks for how sustainability impacts might figure into a prospective LCA tool focused on assessing technologies currently under development. Those frameworks included social and economic impacts, which were characterized alongside environmental impacts, with the goal of predicting potential impacts and developing recommendations for improving technologies. Cultural perspective, in particular the roots of the German circular economy, was explored and held up as a reminder that different communities are influenced by different sustainability concerns, leading to diverse policy and cultural prerogatives. The purpose of this paper is to catalyze conversation about how to frame methodologies of existing LCA tools that could be used in a prospective sustainability context.


Sign in / Sign up

Export Citation Format

Share Document