scholarly journals A life cycle assessment of the environmental impacts of cattle feedlot finishing rations

Author(s):  
Samantha J. Werth ◽  
Alice S. Rocha ◽  
James W. Oltjen ◽  
Ermias Kebreab ◽  
Frank M. Mitloehner

Abstract Purpose A life cycle assessment was performed for the production of a total mixed ration (TMR) fed to finishing feedlot cattle in California, USA. The goal was to determine the climate change impact of the feed supply chain associated with the production of 1 kg finishing TMR (kg CO2e/kg TMR). A secondary goal was to compare the climate change impact of feed versus finished beef (kg CO2e/kg live weight). Methods The TMR was based on feeds commonly fed to finishing cattle in California. The Livestock Environmental Assessment and Performance Partnership (LEAP) guidelines were followed for inventory data collection. System boundaries included the production of crops and feed additives, transportation of TMR components, and compound feed production. Data were sourced from national databases and Ecoinvent™ unit process data. Three scenarios were assessed as a result of allocation at the transportation step: Scenario A (100% empty return load); Scenario B (50% empty return load): and Scenario C (0% empty return load). Energy, mass, and economic allocation, and system expansion of dried distillers grain solubles (DDGS) were assessed for sensitivity analysis. Total feedlot emission data from Stackhouse-Lawson et al. (2012) were used to compare to impacts of TMR production. Results Total emissions were determined to be 0.630 kg CO2e/kg TMR for Scenario A, 0.576 kg CO2e/kg TMR for Scenario B, and 0.521 kg CO2e/kg TMR for Scenario C. Corn production, transportation, and liquid premix production were primary contributors to the life cycle impacts of TMR production. Mass-based allocation of DDGS was found to have the most significant effect on overall impacts of the finishing TMR, with a 42% increase in life cycle emissions compared to other allocation methods. For Scenario A, feed used in Angus feedlot production contributed to 76% of total Angus feedlot emissions. Additionally, feed used in Holstein feedlot production contributed to 58% of total Holstein feedlot emissions. Conclusions and recommendations The present study demonstrates a need to better assess the feed supply chain of feedlot beef production in order to accurately identify areas that have the most significant impacts on overall emissions. This may aid in minimizing impacts associated with feed production and, by extension, beef production. The present study may also serve to inform future decisions for improvements or alterations of the LEAP guidelines.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bart van Straten ◽  
S. Ligtelijn ◽  
L. Droog ◽  
E. Putman ◽  
J. Dankelman ◽  
...  

AbstractThe Covid-19 pandemic led to threatening shortages in healthcare of medical products such as face masks. Due to this major impact on our healthcare society an initiative was conducted between March and July 2020 for reprocessing of face masks from 19 different hospitals. This exceptional opportunity was used to study the costs impact and the carbon footprint of reprocessed face masks relative to new disposable face masks. The aim of this study is to conduct a Life Cycle Assessment (LCA) to assess and compare the climate change impact of disposed versus reprocessed face masks. In total 18.166 high quality medical FFP2 face masks were reprocessed through steam sterilization between March and July 2020. Greenhouse gas emissions during production, transport, sterilization and end-of-life processes were assessed. The background life cycle inventory data were retrieved from the ecoinvent database. The life cycle impact assessment method ReCiPe was used to translate emissions into climate change impact. The cost analysis is based on actual sterilization as well as associated costs compared to the prices of new disposable face masks. A Monte Carlo sampling was used to propagate the uncertainty of different inputs to the LCA results. The carbon footprint appears to be 58% lower for face masks which were reused for five times compared to new face masks which were used for one time only. The sensitivity analysis indicated that the loading capacity of the autoclave and rejection rate of face masks has a large influence on the carbon footprint. The estimated cost price of a reprocessed mask was €1.40 against €1.55. The Life Cycle Assessment demonstrates that reprocessed FFP2 face masks from a circular economy perspective have a lower climate change impact on the carbon footprint than new face masks. For policymakers it is important to realize that the carbon footprint of medical products such as face masks may be reduced by means of circular economy strategies. This study demonstrated a lower climate change impact and lower costs when reprocessing and reusing disposable face masks for five times. Therefore, this study may serve as an inspiration for investigating reprocessing of other medical products that may become scarce. Finally, this study advocates that circular design engineering principles should be taken into account when designing medical devices. This will lead to more sustainable products that have a lower carbon footprint and may be manufactured at lower costs.


2019 ◽  
Vol 11 (17) ◽  
pp. 4722 ◽  
Author(s):  
Kamalakanta Sahoo ◽  
Richard Bergman ◽  
Sevda Alanya-Rosenbaum ◽  
Hongmei Gu ◽  
Shaobo Liang

Climate change, environmental degradation, and limited resources are motivations for sustainable forest management. Forests, the most abundant renewable resource on earth, used to make a wide variety of forest-based products for human consumption. To provide a scientific measure of a product’s sustainability and environmental performance, the life cycle assessment (LCA) method is used. This article provides a comprehensive review of environmental performances of forest-based products including traditional building products, emerging (mass-timber) building products and nanomaterials using attributional LCA. Across the supply chain, the product manufacturing life-cycle stage tends to have the largest environmental impacts. However, forest management activities and logistics tend to have the greatest economic impact. In addition, environmental trade-offs exist when regulating emissions as indicated by the latest traditional wood building product LCAs. Interpretation of these LCA results can guide new product development using biomaterials, future (mass) building systems and policy-making on mitigating climate change. Key challenges include handling of uncertainties in the supply chain and complex interactions of environment, material conversion, resource use for product production and quantifying the emissions released.


2019 ◽  
Vol 21 (10) ◽  
pp. 2635-2655 ◽  
Author(s):  
Jhuma Sadhukhan ◽  
Siddharth Gadkari ◽  
Elias Martinez-Hernandez ◽  
Kok Siew Ng ◽  
Mobolaji Shemfe ◽  
...  

Highly efficient macroalgae based chemical factories and environmental protection have been comprehensively studied for the first time to displace fossil resources to mitigate climate change impact.


Author(s):  
Ira Rumiris Hutagalung ◽  
Toru Matsumoto

Medan City already has been having Waste Water Treatment Plant (WWTP) under PDAM Tirtanadi (North Sumatera Government) supervision, namely IPAL Cemara. IPAL Cemara is off-site sewerage system to treat domestic wastewater, includes black and grey water. IPAL Cemara has maximum capacity 60,000 m3/day, but recently, the number of treated households by IPAL Cemara is 18,396 households and the used capacity is less than 10,000 m3/day. This research analyses on operational phase of IPAL Cemara on environmental impacts, starts at wastewater influent from households and ending at release of wastewater effluent and disposal of dry sludge. The phase of reuse or recycle of effluent wastewater and dry sludge, and waste management are not included. Functional unit in this research is treatment of 7,171 m3 wastewater per day for a year. The system boundary starts at wastewater influent and ends at release of wastewater effluent. The characterization factors are tracked based on CML Baseline 2001 and all of data processed by Microsoft Excel. For the result, got that Aerated Pond has removal efficiency of BOD and COD more than 70%, but on the other hand, it is the largest contributor to Climate Change impact because of diesel consumption (16.97%), the amount of CO2 (4,95%), and N2O (4.26%) from biogenic emission, and electricity use (3.04%). The 65% reducing of TSS is occurred in UASB Reactor but UASB Reactor also as contributor for Climate Change impact (16.63%) and Photo-Oxidant Formation impact (29.34%) due to the highest production of CH4. Facultative Pond contributes 49% of Climate Change impact and 31% of Photo-Oxidant Formation impact because of the highest production of CH4. Based on normalized by impact category, Freshwater Ecotoxicity and Eutrophication is the largest environmental impact in a whole system of IPAL Cemara. Freshwater Ecotoxicity caused by 72% CS2 at Release of Wastewater and Eutrophication caused by 41.25% of NH3 and 39.60% of N. It is Align with the result of normalized by Life Cycle Stage, shows that the Release of Wastewater Effluent is the largest contributor to environment in a whole system of IPAL Cemara.


Sign in / Sign up

Export Citation Format

Share Document