scholarly journals Subsidence prediction of overburden strata and ground surface in shallow coal seam mining

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jian Cao ◽  
Qingxiang Huang ◽  
Lingfei Guo

AbstractShallow coal seam with thick soil layer is widely reserved in the Jurassic Coalfield, Western China, mining-induced subsidence represents complex characteristics. Combining with physical simulation, theoretical analysis and in-situ observation, the overburden strata structure in dip direction were revealed, and the subsidence prediction models were established, based on this, the subsidence equations of overburden strata and ground surface were proposed. The results show that after shallow coal seam mining, based on the subsidence and movement characteristics, the overburden strata structure can be divided into three zones, which are "boundary pillar F-shape zone" (BPZ), "trapezoid goaf zone" (TGZ) and "coal pillar inverted trapezoidal zone" (CPZ). The subsidence of overburden strata depends on the key stratum, while the subsidence of soil layer depends on the bedrock subsidence basin, which is between the bedrock and thick soil layer. The bedrock subsidence is mainly related to mining height and bulking coefficient in TGZ, while it is mainly affected by mining height and distribution load on the key stratum in BPZ and CPZ. According to physical simulation and theoretical model, the maximum surface subsidence of No.1-2 seam mining in Ningtiaota coal mine are 1.1 m and 1.07 m respectively, which is basically consistence with the result of in-situ observation (1.2 m).

2021 ◽  
Author(s):  
Jian Cao ◽  
Qingxiang Huang ◽  
Lingfei Guo

Abstract Shallow coal seam with thick soil layer is widely reserved in the Jurassic Coalfield, Western China, mining-induced subsidence represents complex characteristics. Combining with physical simulation, theoretical analysis and in-situ observation, the overburden strata structure in dip direction were revealed, and the subsidence prediction models were established, based on this, the subsidence equations of overburden strata and ground surface were proposed. The results show that after shallow coal seam mining, based on the subsidence and movement characteristics, the overburden strata structure can be divided into three zones, which are "boundary pillar F-shape zone" (BPZ), "trapezoid goaf zone" (TGZ) and "coal pillar inverted trapezoidal zone" (CPZ). The subsidence of overburden strata depends on the key stratum, while the subsidence of soil layer depends on the bedrock subsidence basin, which is between the bedrock and thick soil layer. The bedrock subsidence is mainly related to mining height and bulking coefficient in TGZ, while it is mainly affected by mining height and distribution load on the key stratum in BPZ and CPZ. According to physical simulation and theoretical model, the maximum surface subsidence of No.1–2 seam mining in Ningtiaota coal mine are 1.1m and 1.07m respectively, which is basically consistence with the result of in-situ observation (1.2m).


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Qingxiang Huang ◽  
Jinlong Zhou ◽  
Jian Cao

The fully mechanized mining with large mining height is the main method for high yield and efficient coal mining in China. The key stratum structure (KSS) is the basis of revealing the mechanism of roof weighting and determination of support working resistance of the longwall face with large mining height (LFLMH) in the shallow coal seam. The height of the caving zone at LFLMH is large, the thick immediate roof forms the “short cantilever beam” structure commonly, and the hinge layer of the overlying key stratum will move upward to the higher position. The “high position oblique step voussoir beam” structure of single-key stratum (SKS) and “oblique step voussoir beam and voussoir beam” structure of double-key stratum (DKS) in the shallow coal seam were proposed with physical simulation and Universal Distinct Element Code (UDEC). The analysis of the KSS and numerical simulation reveals the mechanism of strong roof weighting at the SKS longwall face and large-small alternate periodic weighting at the DKS longwall. It is concluded that the large static load caused by the “equivalent immediate roof (EIR)” is the basic load, and the instability load of the KSS is the additional dynamic load of support. Besides, the calculation methods of the reasonable support working resistance at LFLMH were obtained and verified with engineering applications.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Zhiqiang Wang ◽  
Jingkai Li ◽  
Chao Wu ◽  
Wenyu Lv ◽  
Jiao Zhang ◽  
...  

The study on influence laws of strata behaviors is the basic guarantee of safety mining for shallow coal seam beneath gully terrain. Taking 3302 mining face of Zhujiamao Coal Mine as the engineering background, the laws of strata behaviors for shallow coal seam mining beneath gully terrain are studied by field detection, theoretical analysis, and numerical simulation. The strata pressure observation and the hydraulic support working resistance show that the dynamic strata behaviors appear violently during mining beneath the gully bottom. The theoretical analysis shows that the rotation and breaking of key stratum beneath gully bottom under nonuniform load is the fundamental cause of strong dynamic strata behaviors. The numerical simulation of overburden movement and fissure development characteristics shows that the strata behaviors beneath the gully bottom are stronger than the strata behaviors beneath other areas. Additionally, according to the laws of dynamic strata behaviors, the safety measures for mining beneath gully bottom are put forward.


2013 ◽  
Vol 644 ◽  
pp. 382-386 ◽  
Author(s):  
Ming Ming Wen

The FLAC software is used in establishing a relevant model to study the strata behavior of fully mechanized working face of steep coal seams. Using this model, we have simulated the roof caving characteristic and the stress distribution of surrounding rocks and analyzed the deformation feature of the surrounding rocks in the working face end. Based on the in-situ observation about the fully mechanized working face, we have obtained the surrounding rock stress and the strata behavior of steep coal seam and proposed some countermeasures aiming at these problems.


2021 ◽  
Author(s):  
Mingjiao Lu ◽  
Xueyang Sun ◽  
Enke Hou ◽  
Cheng Li ◽  
Yonggang Zhang

Abstract Mining-induced surface cracks in gullies in shallow seams seriously threaten the development of ecological stability and the safety of mine production. The development law of surface cracks in shallow coal seam mining through double gullies terrain was studied, by taking the Cao Jiatan coal mine in the Yushen Mining Area as a project example. The function T and its discriminant were first put forward to describe the relative position both the surface cracks and working face advanced in shallow coal seam mining through double gullies terrain. The relationship between valley parameters of double gullies terrain and the relative position of surface cracks development was discussed through numerical simulation experiment, similar material simulation experiment and theoretical analysis. The results showed that when the working face passed through the G1 gully, the development of surface cracks led the working face. There were four surface cracks with a maximum width of 23 cm, and the maximum vertical displacement was 11 cm; while passing through the G2 gully, the development of surface cracks lagged the working face. There were seven surface cracks with a maximum width of 79 cm, and the maximum vertical displacement was 45 cm. It can be concluded that the relative position of crack development is greatly affected by geological conditions, gully depth, slope angle, span and other factors of the gully, among of which the gully slope angle is the main influencing factor. T and |T| value has a certain correlation with the lagging distance, crack width, vertical displacement and the total number of cracks in a single gully.


Sign in / Sign up

Export Citation Format

Share Document