scholarly journals The function of PROTOPORPHYRINOGEN IX OXIDASE in chlorophyll biosynthesis requires oxidised plastoquinone in Chlamydomonas reinhardtii

2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Pawel Brzezowski ◽  
Brigitte Ksas ◽  
Michel Havaux ◽  
Bernhard Grimm ◽  
Marie Chazaux ◽  
...  
Biologia ◽  
2008 ◽  
Vol 63 (6) ◽  
Author(s):  
Eliška Gálová ◽  
Iveta Šalgovičová ◽  
Viktor Demko ◽  
Katarína Mikulová ◽  
Andrea Ševčovičová ◽  
...  

AbstractChlorophylls are the most abundant classes of natural pigments and their biosynthesis is therefore a major metabolic activity in the ecosphere. Two pathways exist for chlorophyll biosynthesis, one taking place in darkness and the other requiring continuous light as a precondition. The key process for Chl synthesis is the reduction of protochlorophyllide (Pchlide). This enzymatic reaction is catalysed by two different enzymes — DPOR (dark-operative Pchlide oxidoreductase) or the structurally distinct LPOR (light-dependent Pchlide oxidoreductase). DPOR which consists of three subunits encoded by three plastid genes in eukaryotes was subject of our study. A short overview of our present knowledge of chlorophyll biosynthesis in Chlamydomonas reinhardtii in comparison with other plants is presented.


2015 ◽  
Vol 71 (8) ◽  
pp. 1094-1099 ◽  
Author(s):  
Shabnam Tarahi Tabrizi ◽  
David B. Langley ◽  
Stephen J. Harrop ◽  
Anthony P. Duff ◽  
Robert D. Willows

The genomes uncoupled 4 (GUN4) protein stimulates chlorophyll biosynthesis by increasing the activity of Mg-chelatase, the enzyme that inserts magnesium into protoporphyrin IX (PPIX) in the chlorophyll biosynthesis pathway. One of the roles of GUN4 is in binding PPIX and Mg-PPIX. In eukaryotes, GUN4 also participates in plastid-to-nucleus signalling, although the mechanism for this is unclear. Here, the first crystal structure of a eukaryotic GUN4, fromChlamydomonas reinhardtii, is presented. The structure is in broad agreement with those of previously solved cyanobacterial structures. Most interestingly, conformational divergence is restricted to several loops which cover the porphyrin-binding cleft. The conformational dynamics suggested by this ensemble of structures lend support to the understanding of how GUN4 binds PPIX or Mg-PPIX.


2010 ◽  
Vol 8 (2) ◽  
pp. 35-44
Author(s):  
Elena M Chekunova ◽  
Natalya V Savelieva

The genetic control of light-independent chlorophyll biosynthesis in plant cells has been investigated using Chlamydomonas reinhardtii Lts3-mutants defective in dark chlorophyll biosynthesis on the stage before protochlorophyllide to chlorophyllide conversion. In heterotrophic conditions the mutants are unable to synthesize chlorophyll and accumulate protoporphyrins, after illumination they are greening. The mutants were tested for pigment contents, activity of enzymes and expression of the genes, encoding these enzymes. The LTS3 gene has been identified by positional cloning, and the predicted LTS3 protein appeared to be a GATA transcription factor, which activate the expression of genes encoded chlorophyll biosynthesis enzymes: Mg-chelatase and glutamate 1-semialdehyde aminotransferase in the dark, and possibly, important for adaptation of plant cells for autotrophic conditions. 


2005 ◽  
Vol 4 (10) ◽  
pp. 1620-1628 ◽  
Author(s):  
Zinaida Vasileuskaya ◽  
Ulrike Oster ◽  
Christoph F. Beck

ABSTRACT HEMA encodes glutamyl-tRNA reductase (GluTR), which catalyzes the first step specific for tetrapyrrole biosynthesis in plants, archaea, and most eubacteria. In higher plants, GluTR is feedback inhibited by heme and intermediates of chlorophyll biosynthesis. It plays a key role in controlling flux through the tetrapyrrole biosynthetic pathway. This enzyme, which in Chlamydomonas reinhardtii is encoded by a single gene (HEMA), exhibits homology to GluTRs of higher plants and cyanobacteria. HEMA mRNA accumulation was inducible not only by light but also by treatment of dark-adapted cells with Mg-protoporphyrin IX (MgProto) or hemin. The specificity of these tetrapyrroles as inducers was demonstrated by the absence of induction observed upon the feeding of protoporphyrin IX, the precursor of both heme and MgProto, or chlorophyllide. The HEMA mRNA accumulation following treatment of cells with light and hemin was accompanied by increased amounts of GluTR. However, the feeding of MgProto did not suggest a role for Mg-tetrapyrroles in posttranscriptional regulation. The induction by light but not that by the tetrapyrroles was prevented by inhibition of cytoplasmic protein synthesis. Since MgProto is synthesized exclusively in plastids and heme is synthesized in plastids and mitochondria, the data suggest a role of these compounds as organellar signals that control expression of the nuclear HEMA gene.


Author(s):  
E. M. Chekunova ◽  
E. B. Yaronskaya ◽  
N. V. Shalygo ◽  
N. G. Averina ◽  
A. S. Chunayev

F1000Research ◽  
2013 ◽  
Vol 2 ◽  
pp. 138 ◽  
Author(s):  
Phillip B Grovenstein ◽  
Darryel A Wilson ◽  
Cameron G Lennox ◽  
Katherine P Smith ◽  
Alisha A Contractor ◽  
...  

The green micro-alga Chlamydomonas reinhardtii is an elegant model organism to study all aspects of oxygenic photosynthesis. Chlorophyll (Chl) and heme are major tetrapyrroles that play an essential role in energy metabolism in photosynthetic organisms and are synthesized via a common branched tetrapyrrole biosynthetic pathway. One of the enzymes in the pathway is Mg chelatase (MgChel) which inserts Mg2+ into protoporphyrin IX (PPIX, proto) to form magnesium-protoporphyrin IX (MgPPIX, Mgproto), the first biosynthetic intermediate in the Chl branch. MgChel is a multimeric enzyme that consists of three subunits designated CHLD, CHLI and CHLH. Plants have two isozymes of CHLI (CHLI1 and CHLI2) which are 70%-81% identical in protein sequences. Although the functional role of CHLI1 is well characterized, that of CHLI2 is not. We have isolated a non-photosynthetic light sensitive mutant 5A7 by random DNA insertional mutagenesis that is devoid of any detectable Chl. PCR based analyses show that 5A7 is missing the CHLI1 gene and at least eight additional functionally uncharacterized genes. 5A7 has an intact CHLI2 gene. Complementation with a functional copy of the CHLI1 gene restored Chl biosynthesis, photo-autotrophic growth and light tolerance in 5A7. We have identified the first chli1 mutant of Chlamydomonas reinhardtii and in green algae. Our results show that in the wild type Chlamydomonas CHLI2 protein amount is lower than that of CHLI1 and the chli1 mutant has a drastic reduction in CHLI2 protein levels although it possesses the CHLI2 gene. Our chli1 mutant opens up new avenues to explore the functional roles of CHLI1 and CHLI2 in Chl biosynthesis and chloroplast to nucleus retrograde signaling in Chlamydomonas, which has never been studied before.


Sign in / Sign up

Export Citation Format

Share Document