gata transcription factor
Recently Published Documents


TOTAL DOCUMENTS

103
(FIVE YEARS 32)

H-INDEX

23
(FIVE YEARS 3)

PLoS Genetics ◽  
2021 ◽  
Vol 17 (12) ◽  
pp. e1009947
Author(s):  
Qian Zheng ◽  
Ning Gao ◽  
Qiling Sun ◽  
Xiaowen Li ◽  
Yanzhe Wang ◽  
...  

Efferocytosis is the process by which phagocytes recognize, engulf, and digest (or clear) apoptotic cells during development. Impaired efferocytosis is associated with developmental defects and autoimmune diseases. In Drosophila melanogaster, recognition of apoptotic cells requires phagocyte surface receptors, including the scavenger receptor CD36-related protein, Croquemort (Crq, encoded by crq). In fact, Crq expression is upregulated in the presence of apoptotic cells, as well as in response to excessive apoptosis. Here, we identified a novel gene bfc (booster for croquemort), which plays a role in efferocytosis, specifically the regulation of the crq expression. We found that Bfc protein interacts with the zinc finger domain of the GATA transcription factor Serpent (Srp), to enhance its direct binding to the crq promoter; thus, they function together in regulating crq expression and efferocytosis. Overall, we show that Bfc serves as a Srp co-factor to upregulate the transcription of the crq encoded receptor, and consequently boosts macrophage efferocytosis in response to excessive apoptosis. Therefore, this study clarifies how phagocytes integrate apoptotic cell signals to mediate efferocytosis.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Ang Li ◽  
Chirag Parsania ◽  
Kaeling Tan ◽  
Richard B. Todd ◽  
Koon Ho Wong

AbstractNutrient acquisition is essential for all organisms. Fungi regulate their metabolism according to environmental nutrient availability through elaborate transcription regulatory programs. In filamentous fungi, a highly conserved GATA transcription factor AreA and its co-repressor NmrA govern expression of genes involved in extracellular breakdown, uptake, and metabolism of nitrogen nutrients. Here, we show that the Aspergillus nidulans PnmB protease is a moonlighting protein with extracellular and intracellular functions for nitrogen acquisition and metabolism. PnmB serves not only as a secreted protease to degrade extracellular nutrients, but also as an intracellular protease to control the turnover of the co-repressor NmrA, accelerating AreA transcriptional activation upon nitrogen starvation. PnmB expression is controlled by AreA, which activates a positive feedback regulatory loop. Hence, we uncover a regulatory mechanism in the well-established controls determining the response to nitrogen starvation, revealing functional evolution of a protease gene for transcriptional regulation and extracellular nutrient breakdown.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (10) ◽  
pp. e1009855
Author(s):  
Krista Kokki ◽  
Nicole Lamichane ◽  
Anni I. Nieminen ◽  
Hanna Ruhanen ◽  
Jack Morikka ◽  
...  

Nutrient-dependent gene regulation critically contributes to homeostatic control of animal physiology in changing nutrient landscape. In Drosophila, dietary sugars activate transcription factors (TFs), such as Mondo-Mlx, Sugarbabe and Cabut, which control metabolic gene expression to mediate physiological adaptation to high sugar diet. TFs that correspondingly control sugar responsive metabolic genes under conditions of low dietary sugar remain, however, poorly understood. Here we identify a role for Drosophila GATA TF Grain in metabolic gene regulation under both low and high sugar conditions. De novo motif prediction uncovered a significant over-representation of GATA-like motifs on the promoters of sugar-activated genes in Drosophila larvae, which are regulated by Grain, the fly ortholog of GATA1/2/3 subfamily. grain expression is activated by sugar in Mondo-Mlx-dependent manner and it contributes to sugar-responsive gene expression in the fat body. On the other hand, grain displays strong constitutive expression in the anterior midgut, where it drives lipogenic gene expression also under low sugar conditions. Consistently with these differential tissue-specific roles, Grain deficient larvae display delayed development on high sugar diet, while showing deregulated central carbon and lipid metabolism primarily on low sugar diet. Collectively, our study provides evidence for the role of a metazoan GATA transcription factor in nutrient-responsive metabolic gene regulation in vivo.


2021 ◽  
Vol 9 (4) ◽  
pp. 407-416
Author(s):  
Satyabrata Nanda ◽  
◽  
Gagan Kumar ◽  
Sudheer Kumar Yadav ◽  
Sajid Hussain ◽  
...  

The GATA transcription factors (TFs) play a crucial role in regulating various physiological processes in plants. Identification and characterization of the GATA TF family has been carried out in several important grass species, including rice, maize, and bamboo. However, no information is available on the GATA TFs in the C3 grass species Dichanthelium oligosanthes. In the current study, 31 GATA genes have been identified in the D. oligosanthes genome by stringent bioinformatics analysis. The exon-intron arrangement analysis of the DoGATAs via the Gene Structure Display Server (GSDS 2.0) revealed the redundancy and differences in their gene structural organization. In addition, the sequence comparisons within the DoGATAs via BLAST revealed 11 numbers of putative paralogs. Similarly, the BLAST comparisons among the OsGATAs and DoGATAs resulted in the identification of 21 orthologs. Structural analysis of the identified DoGATAs through Simple Modular Architecture Research Tool (SMART), Conserved Domain Database (CDD), and Multiple Expectation Maximization for Motif Elicitation (MEME) revealed that all of them possess the signature GATA domain and the C-X2-C-X18-C-X2-C consensus sequence. The phylogenetic analysis via MEGA divided the DoGATAs into four groups along with rice and Arabidopsis GATAs. In addition, the subcellular localization, gene ontology, and other peptide functional prediction results further supported the DoGATAs to be putative GATA genes. Moreover, the findings of this study can serve as a basic framework for the isolation and functional characterization of GATA genes in D. oligosanthes.


2021 ◽  
Vol 7 (7) ◽  
pp. 512
Author(s):  
Chaochuang Li ◽  
Qipei Zhang ◽  
Yuxian Xia ◽  
Kai Jin

The nitrogen catabolite repression (NCR) pathway is involved in nitrogen utilization, in which the global GATA transcription factor AreA plays an indispensable role and has been reported in many fungi. However, relatively few studies are focused on AreB, another GATA transcription factor in the NCR pathway and the functions of AreB are largely unknown in entomopathogenic fungi. Here, we characterized MaAreB in the model entomopathogenic fungus Metarhizium acridum. Sequence arrangement found that MaAreB had a conserved GATA zinc finger DNA binding domain and a leucine zipper domain. Disruption of MaAreB affected the nitrogen utilization and led to decelerated conidial germination and hyphal growth, decreased conidial yield, and lower tolerances to UV-B irradiation and heat-shock. Furthermore, the MaAreB mutant (ΔMaAreB) exhibited increased sensitivity to CFW (Calcofluor white), decreased cell wall contents (chitin and β-1,3-glucan) and reduced expression levels of some genes related to cell wall integrity, indicating that disruption of MaAreB affected the cell wall integrity. Bioassays showed that the virulence of the ΔMaAreB strain was decreased in topical inoculation but not in intra-hemocoel injection. Consistently, deletion of MaAreB severely impaired the appressorium formation and reduced the turgor pressure of appressorium. These results revealed that MaAreB regulated fungal nitrogen utilization, cell wall integrity and biological control potential, which would contribute to the functional characterization of AreB homologous proteins in other insect fungal pathogens, and even filamentous fungi.


2021 ◽  
Author(s):  
Hongyu Huang ◽  
Qinqin Yang ◽  
Lidong Zhang ◽  
Weiliang Kong ◽  
Huizhe Wang ◽  
...  

Abstract Fruit skin color is a crucial external trait that affects consumer preference in cucumber. In this study, an F2 population was constructed from a cross between the inbred lines G35 (with light-green fruit skin) and Q51 (with dark-green fruit skin) and used to investigate the inheritance patterns of fruit skin color in cucumber. Genetic analysis showed that dark-green fruit skin was dominant to light-green skin. A major QTL, Fruit skin 1 (CsFS1), was identified between 36.62 Mb and 39.77 Mb on chromosome 3 by BSA-seq and GWAS. We further narrowed down the CsFS1 locus to a 94-kb interval containing 15 candidate genes in three F2 recombinant individuals with light-green skin color and one BC4F2 recombinant individual with dark-green skin color. Among these genes, Csa3G912920, which encodes a GATA transcription factor, was expressed at a higher level in the pericarp of the NIL-1334 line (with light-green fruit skin) than in that of the NIL-1325 line (with dark-green fruit skin). This study provides a novel allele for the improvement of fruit skin color in cucumber breeding.


Rice ◽  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Hongjia Zhang ◽  
Tao Wu ◽  
Zhao Li ◽  
Kai Huang ◽  
Na-Eun Kim ◽  
...  

Abstract Background Cold stress is the main abiotic stress in rice, which seriously affects the growth and yield of rice. Identification of cold tolerance genes is of great significance for rice to solve these problems. GATA-family transcription factors involve diverse biological functions, however, their role in cold tolerance in rice remains unclear. Results In this study, a GATA-type zinc finger transcription factor OsGATA16, which can improve cold tolerance, was isolated and characterized from rice. OsGATA16 belongs to OsGATA subfamily-II and contains 11 putative phosphorylation sites, a nuclear localization signal (NLS), and other several conserved domains. OsGATA16 was expressed in all plant tissues, with the strongest in panicles. It was induced by cold and ABA treatments, but was repressed by drought, cytokinin and JA, and acted as a transcriptional suppressor in the nucleus. Overexpression of OsGATA16 improves cold tolerance of rice at seedling stage. Under cold stress treatments, the transcription of four cold-related genes OsWRKY45–1, OsSRFP1, OsCYL4, and OsMYB30 was repressed in OsGATA16-overexpressing (OE) rice compared with wild-type (WT). Interestingly, OsGATA16 bound to the promoter of OsWRKY45–1 and repressed its expression. In addition, haplotype analysis showed that OsGATA16 polarized between the two major rice subspecies japonica and indica, and had a non-synonymous SNP8 (336G) associated with cold tolerance. Conclusion OsGATA16 is a GATA transcription factor, which improves cold tolerance at seedling stage in rice. It acts as a positive regulator of cold tolerance by repressing some cold-related genes such as OsWRKY45–1, OsSRFP1, OsCYL4 and OsMYB30. Additionally, OsGATA16 has a non-synonymous SNP8 (336G) associated with cold tolerance on CDS region. This study provides a theoretical basis for elucidating the mechanism of cold tolerance in rice and new germplasm resources for rice breeding.


AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chunmiao Jiang ◽  
Gongbo Lv ◽  
Jinxin Ge ◽  
Bin He ◽  
Zhe Zhang ◽  
...  

AbstractGATA transcription factors (TFs) are involved in the regulation of growth processes and various environmental stresses. Although GATA TFs involved in abiotic stress in plants and some fungi have been analyzed, information regarding GATA TFs in Aspergillusoryzae is extremely poor. In this study, we identified and functionally characterized seven GATA proteins from A.oryzae 3.042 genome, including a novel AoSnf5 GATA TF with 20-residue between the Cys-X2-Cys motifs which was found in Aspergillus GATA TFs for the first time. Phylogenetic analysis indicated that these seven A. oryzae GATA TFs could be classified into six subgroups. Analysis of conserved motifs demonstrated that Aspergillus GATA TFs with similar motif compositions clustered in one subgroup, suggesting that they might possess similar genetic functions, further confirming the accuracy of the phylogenetic relationship. Furthermore, the expression patterns of seven A.oryzae GATA TFs under temperature and salt stresses indicated that A. oryzae GATA TFs were mainly responsive to high temperature and high salt stress. The protein–protein interaction network of A.oryzae GATA TFs revealed certain potentially interacting proteins. The comprehensive analysis of A. oryzae GATA TFs will be beneficial for understanding their biological function and evolutionary features and provide an important starting point to further understand the role of GATA TFs in the regulation of distinct environmental conditions in A.oryzae.


Sign in / Sign up

Export Citation Format

Share Document