scholarly journals The surprising role of the default mode network in naturalistic perception

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Talia Brandman ◽  
Rafael Malach ◽  
Erez Simony

AbstractThe default mode network (DMN) is a group of high-order brain regions recently implicated in processing external naturalistic events, yet it remains unclear what cognitive function it serves. Here we identified the cognitive states predictive of DMN fMRI coactivation. Particularly, we developed a state-fluctuation pattern analysis, matching network coactivations across a short movie with retrospective behavioral sampling of movie events. Network coactivation was selectively correlated with the state of surprise across movie events, compared to all other cognitive states (e.g. emotion, vividness). The effect was exhibited in the DMN, but not dorsal attention or visual networks. Furthermore, surprise was found to mediate DMN coactivations with hippocampus and nucleus accumbens. These unexpected findings point to the DMN as a major hub in high-level prediction-error representations.

2020 ◽  
Author(s):  
T. Brandman ◽  
R. Malach ◽  
E. Simony.

AbstractThe default mode network (DMN) is a group of high-order brain regions recently implicated in processing external naturalistic events, yet it remains unclear what cognitive function it serves. Here we identified the cognitive states predictive of DMN fMRI coactivation. Particularly, we developed a state-fluctuation pattern analysis, matching network coactivations across a short movie with retrospective behavioral sampling of movie events. Network coactivation was selectively correlated with the state of surprise across movie events, compared to all other cognitive states (e.g. emotion, vividness). The effect was exhibited in the DMN, but not dorsal attention or visual networks. Furthermore, surprise was found to mediate DMN coactivations with hippocampus and nucleus accumbens. These unexpected findings point to the DMN as a major hub in high-level prediction-error representations.


2015 ◽  
Vol 27 (12) ◽  
pp. 2369-2381 ◽  
Author(s):  
Amanda Elton ◽  
Wei Gao

The default mode network (DMN) was first recognized as a set of brain regions demonstrating consistently greater activity during rest than during a multitude of tasks. Originally, this network was believed to interfere with goal-directed behavior based on its decreased activity during many such tasks. More recently, however, the role of the DMN during goal-directed behavior was established for internally oriented tasks, in which the DMN demonstrated increased activity. However, the well-documented hub position and information-bridging potential of midline DMN regions indicate that there is more to uncover regarding its functional contributions to goal-directed tasks, which may be based on its functional interactions rather than its level of activation. An investigation of task-related changes in DMN functional connectivity during a series of both internal and external tasks would provide the requisite investigation for examining the role of the DMN during goal-directed task performance. In this study, 20 participants underwent fMRI while performing six tasks spanning diverse internal and external domains in addition to a resting-state scan. We hypothesized that the DMN would demonstrate “task-positive” (i.e., positively contributing to task performance) changes in functional connectivity relative to rest regardless of the direction of task-related changes in activity. Indeed, our results demonstrate significant increases in DMN connectivity with task-promoting regions (e.g., anterior insula, inferior frontal gyrus, middle frontal gyrus) across all six tasks. Furthermore, canonical correlation analyses indicated that the observed task-related connectivity changes were significantly associated with individual differences in task performance. Our results indicate that the DMN may not only support a “default” mode but may play a greater role in both internal and external tasks through flexible coupling with task-relevant brain regions.


Entropy ◽  
2018 ◽  
Vol 20 (10) ◽  
pp. 742 ◽  
Author(s):  
Borja Camino-Pontes ◽  
Ibai Diez ◽  
Antonio Jimenez-Marin ◽  
Javier Rasero ◽  
Asier Erramuzpe ◽  
...  

Interaction Information (II) generalizes the univariate Shannon entropy to triplets of variables, allowing the detection of redundant (R) or synergetic (S) interactions in dynamical networks. Here, we calculated II from functional magnetic resonance imaging data and asked whether R or S vary across brain regions and along lifespan. Preserved along lifespan, we found high overlapping between the pattern of high R and the default mode network, whereas high values of S were overlapping with different cognitive domains, such as spatial and temporal memory, emotion processing and motor skills. Moreover, we have found a robust balance between R and S among different age intervals, indicating informational compensatory mechanisms in brain networks.


2018 ◽  
Author(s):  
Borja Camino-Pontes ◽  
Ibai Diez ◽  
Antonio Jimenez-Marin ◽  
Javier Rasero ◽  
Paolo Xu ◽  
...  

AbstractInteraction Information generalizes the univariate Shannon Entropy to triplets of variables, allowing the detection of redundant or synergetic interactions in dynamical networks. Here, we calculated interaction information from functional magnetic resonance imaging and asked whether redundancy or synergy vary across brain regions and along lifespan. We found high overlapping between the pattern of high redundancy and the default mode network, and this occurred along lifespan. The pattern of high values of synergy, more heterogeneous and variable along lifespan, was overlapping with different cognitive domains, such as spatial and temporal memory, emotion processing and motor skills. Moreover, the amount of redundancy and synergy seem to be balanced along lifespan, suggesting informational compensatory mechanisms in brain networks.


2010 ◽  
Vol 21 (1) ◽  
pp. 233-244 ◽  
Author(s):  
A. Pfefferbaum ◽  
S. Chanraud ◽  
A.-L. Pitel ◽  
E. Muller-Oehring ◽  
A. Shankaranarayanan ◽  
...  

2017 ◽  
Vol 05 (01) ◽  
Author(s):  
Tzipi Horowitz Kraus ◽  
Rola Farah ◽  
Ardag Hajinazarian ◽  
Kenneth Eaton ◽  
Akila Rajagopal ◽  
...  

2017 ◽  
Vol 12 (7) ◽  
pp. 1047-1062 ◽  
Author(s):  
Giulia L. Poerio ◽  
Mladen Sormaz ◽  
Hao-Ting Wang ◽  
Daniel Margulies ◽  
Elizabeth Jefferies ◽  
...  

2017 ◽  
Author(s):  
Wendy Hasenkamp ◽  
Christine Wilson-Mendenhall ◽  
Erica Duncan ◽  
Lawrence Barsalou

Studies have suggested that the default mode network is active during mind wandering, which is often experienced intermittently during sustained attention tasks. Conversely, an anticorrelated task-positive network is thought to subserve various forms of attentional processing. Understanding how these two systems work together is central for understanding many forms of optimal and sub-optimal task performance. Here we present a basic model of naturalistic cognitive fluctuations between mind wandering and attentional states derived from the practice of focused attention meditation. This model proposes four intervals in a cognitive cycle: mind wandering, awareness of mind wandering, shifting of attention, and sustained attention. People who train in this style of meditation cultivate their abilities to monitor cognitive processes related to attention and distraction, making them well suited to report on these mental events. Fourteen meditation practitioners performed breath-focused meditation while undergoing fMRI scanning. When participants realized their mind had wandered, they pressed a button and returned their focus to the breath. The four intervals above were then constructed around these button presses. We hypothesized that periods of mind wandering would be associated with default mode activity, whereas cognitive processes engaged during awareness of mind wandering, shifting of attention and sustained attention would engage attentional subnetworks. Analyses revealed activity in brain regions associated with the default mode during mind wandering, and in salience network regions during awareness of mind wandering. Elements of the executive network were active during shifting and sustained attention. Furthermore, activations during these cognitive phases were modulated by lifetime meditation experience. These findings support and extend theories about cognitive correlates of distributed brain networks.


2020 ◽  
Vol 46 (Supplement_1) ◽  
pp. S10-S10
Author(s):  
Margaret Niznikiewicz ◽  
Kana Okano ◽  
Clemens Bauer ◽  
Paul Nestor ◽  
Elizabetta Del Re ◽  
...  

Abstract Background Auditory hallucinations (AH) are one of the core symptoms of schizophrenia (SZ) and constitute a significant source of suffering and disability. One third of SZ patients experience pharmacology-resistant AH, so an alternative/complementary treatment strategy is needed to alleviate this debilitating condition. In this study, real-time functional Magnetic Resonance Imaging neurofeedback (rt-fMRI NFB), a non-invasive technique, was used to help 10 SZ patients modulate their brain activity in key brain regions belonging to the network involved in the experience of auditory hallucinations. In two experiments we selected two different brain targets. 1. the superior temporal gyrus (STG) and 2. default mode network (DMN)-central executive network (CEN) connectivity. STG is a key area in the neurophysiology of AH. Hyperactivation of the default mode network (DMN) and of the superior temporal gyrus (STG) in SZ has been shown in imaging studies. Furthermore, several studies point to reduced anticorrelation between the DMN and the central executive network (CEN). Finally, DMN hyperconnectivity has been associated with positive symptoms such as AHs while reduced DMN anticorrelations have been associated with cognitive impairment. Methods In the STG-focused NFB experiment, subjects were trained to upregulate the STG activity while listening to their own voice recording and downregulate it while ignoring a stranger’s voice recording in the course of 21 min NFB session. Visual feedback was provided to subjects at the end of each run from their own STG activity in the form of a thermometer. AH were assessed with auditory hallucination scale pre-NFB and within a week after the NFB session. The DMN-CEN focused NFB experiment was conducted about 1 month later to minimize the carry over effects from the STG-focused NFB and was designed to help SZ patients modulate their DMN and CEN networks. DMN and CEN networks were defined individually for each subject. The goal of the task was to increase CEN-DMN anti-correlations. To achieve that patients were provided with meditation strategies to guide their performance. Feedback was provided in the form of a ball that traveled up if the modulation of DMN-CEN connectivity was successful and traveled down if it was not successful. AH measures were taken before the NFB session and within a week after the session. Results In the STG-focused NFB task, significant STG activation reduction was found in the comparison of pre- relative to post-NFB in the condition of ignoring another person’s voice (p<0.05), FWE-TFCE corrected. AH were also significantly reduced (p<0.01). Importantly, significant correlation was found between reductions in the STG activation and AH reductions (r=.83). In the DMN-CEN focused NFB task, significant increase in the anti-correlations between medial prefrontal cortex (mPFC) and dorsolateral prefrontal cortex (DLPFC) (p<0.05) was observed as well as significant reduction in the mPFC-PCC connectivity (p <0.05), in the pre-post NFB comparisons. AH were significantly reduced in post- relative to pre-NFB comparison (p<0.02). Finally, there was a significant correlation between individual scores in mPFC-STG connectivity and AH reductions. Discussion These the two experiments suggest that targeting both the STG BOLD activation and DMN-CEN connectivity in NFB tasks aimed at AH reduction result both in brain changes and in AH reductions. Together, these results provide strong preliminary support for the NFB use as a means to impact brain function leading to reductions in AH in SZ. Importantly, these results suggest that AH result from brain abnormalities in a network of brain regions and that targeting a brain region belonging to this network will lead to AH symptom reduction.


Sign in / Sign up

Export Citation Format

Share Document