scholarly journals On-target IgG hexamerisation driven by a C-terminal IgM tail-piece fusion variant confers augmented complement activation

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Joshua M. Sopp ◽  
Shirley J. Peters ◽  
Tania F. Rowley ◽  
Robert J. Oldham ◽  
Sonya James ◽  
...  

AbstractThe majority of depleting monoclonal antibody (mAb) drugs elicit responses via Fc-FcγR and Fc-C1q interactions. Optimal C1q interaction is achieved through hexameric Fc:Fc interactions at the target cell surface. Herein is described an approach to exploit the tailpiece of the naturally multimeric IgM to augment hexamerisation of IgG. Fusion of the C-terminal tailpiece of IgM promoted spontaneous hIgG hexamer formation, resulting in enhanced C1q recruitment and complement-dependent cytotoxicity (CDC) but with off-target complement activation and reduced in-vivo efficacy. Mutation of the penultimate tailpiece cysteine to serine (C575S) ablated spontaneous hexamer formation, but facilitated reversible hexamer formation after concentration in solution. C575S mutant tailpiece antibodies displayed increased complement activity only after target binding, in-line with the concept of ‘on-target hexamerisation’, whilst retaining efficient in-vivo efficacy and augmented target cell killing in the lymph node. Hence, C575S-tailpiece technology represents an alternative format for promoting on-target hexamerisation and enhanced CDC.

2007 ◽  
Vol 44 (16) ◽  
pp. 3948-3949
Author(s):  
Baldwin C. Mak ◽  
Fortunata McConkey ◽  
Ningping Feng ◽  
Kevin O’Reilly ◽  
Daniel Rubinstein ◽  
...  

Cancer ◽  
1994 ◽  
Vol 73 (3) ◽  
pp. 580-589 ◽  
Author(s):  
Pierre L. Triozzi ◽  
Julian A. Kim ◽  
Wayne Aldrich ◽  
Donn C. Young ◽  
James W. Sampsel ◽  
...  

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 35-35
Author(s):  
Alexa A Jordan ◽  
Joseph McIntosh ◽  
Yang Liu ◽  
Angela Leeming ◽  
William Lee ◽  
...  

Mantle cell lymphoma (MCL) is a rare but aggressive B-cell non-Hodgkin's lymphoma that represents 6% of all lymphomas in the United States. Recent therapies including anti-CD20 antibody rituximab, BTK inhibitors, and BCL-2 inhibitors alone or in combination have shown great anti-MCL efficacy. However, primary and acquired resistance to one or multiple therapies commonly occurs, resulting in poor clinical outcome. Therefore, resistance to such therapies is currently an unmet clinical challenge in MCL patients. Therapeutic strategies to overcome this resistance holds promise to significantly improve survival of refractory/relapsed MCL patients. Recent studies showed Fc gamma receptors (FcγRs) play important roles in enhancing the efficacy of antibody-based immunotherapy. In particular, FcgRIIB (CD32B), an inhibitory member of the FcγR family, is implicated in the immune cell desensitization and tumor cell resistance through the internalization of therapeutic antibodies such as rituximab. Based on our flow cytometry analysis, we demonstrated that FcgRIIB is highly expressed on the cell surface of MCL cell lines (n=10) and primary MCL patient samples (n=22). This indicates that FcgRIIB may play an important role in MCL malignancy and identifies FcgRIIB is a potential therapeutic target for the treatment of MCL. To address this, we tested the in vivo efficacy of BI-1206, a fully humanized monoclonal antibody targeting FcgRIIB, alone, or in combination with clinically approved or investigational drugs including rituximab, ibrutinib and venetoclax. In the first in vivo cohort, BI-1206, as a single agent, dramatically inhibited the tumor growth of ibrutinib-venetoclax dual-resistant PDX tumor models, suggesting that targeting FcgRIIB by BI-1206 alone has high anti-MCL activity in vivo. Next, we assessed whether BI-1206 can boost anti-MCL activity of antibody-based therapy such as rituximab in combination with ibrutinib or venetoclax using additional mice cohorts of cell line-derived xenograft and patient-derived xenograft models. BI-1206 significantly enhanced the in vivo efficacy of ibrutinib plus rituximab, and venetoclax plus rituximab, on tumor growth inhibition, including the JeKo-1 derived xenograft models, previously proven to be partially resistant to ibrutinib and venetoclax in vivo. This tumor-sensitizaton effect was further confirmed in the ibrutinib and venetoclax dual-resistant PDX models of MCL where BI-1206 was combined with venetoclax and rituximab. More detailed mechanistic studies are currently ongoing to reveal the mechanism of action of BI-1206-based combinations or as single therapy with the possibility that BI-1206 itself may have a cytotoxic anti-tumor direct activity in MCL. In conclusion, BI-1206 as single agent showed potent efficacy in overcoming ibrutnib-venetoclax dual resistance. Moveover, BI-1206 enhanced the in vivo efficacy of ibrutinib plus rituximab and venetoclax plus rituximab and overcomes resistance to these treatments resulting in enhanced anti-tumor effects. Disclosures Karlsson: BioInvent International AB: Current Employment. Mårtensson:BioInvent International AB: Current Employment, Current equity holder in publicly-traded company. Kovacek:BioInvent International AB: Current Employment, Current equity holder in publicly-traded company. Teige:BioInvent International AB: Current Employment, Current equity holder in publicly-traded company. Frendéus:BioInvent International AB: Current Employment, Current equity holder in publicly-traded company. Wang:Pulse Biosciences: Consultancy; Loxo Oncology: Consultancy, Research Funding; Kite Pharma: Consultancy, Other: Travel, accommodation, expenses, Research Funding; BioInvent: Research Funding; Juno: Consultancy, Research Funding; Beijing Medical Award Foundation: Honoraria; OncLive: Honoraria; Verastem: Research Funding; Molecular Templates: Research Funding; Dava Oncology: Honoraria; Guidepoint Global: Consultancy; Nobel Insights: Consultancy; Oncternal: Consultancy, Research Funding; InnoCare: Consultancy; Acerta Pharma: Research Funding; VelosBio: Research Funding; MoreHealth: Consultancy; Targeted Oncology: Honoraria; OMI: Honoraria, Other: Travel, accommodation, expenses; Celgene: Consultancy, Other: Travel, accommodation, expenses, Research Funding; AstraZeneca: Consultancy, Honoraria, Other: Travel, accommodation, expenses, Research Funding; Pharmacyclics: Consultancy, Honoraria, Other: Travel, accommodation, expenses, Research Funding; Janssen: Consultancy, Honoraria, Other: Travel, accommodation, expenses, Research Funding; Lu Daopei Medical Group: Honoraria.


Author(s):  
Ting Gao ◽  
Mingdong Hu ◽  
Xiaopeng Zhang ◽  
Hongzhen Li ◽  
Lin Zhu ◽  
...  

AbstractAn excessive immune response contributes to SARS-CoV, MERS-CoV and SARS-CoV-2 pathogenesis and lethality, but the mechanism remains unclear. In this study, the N proteins of SARS-CoV, MERS-CoV and SARS-CoV-2 were found to bind to MASP-2, the key serine protease in the lectin pathway of complement activation, resulting in aberrant complement activation and aggravated inflammatory lung injury. Either blocking the N protein:MASP-2 interaction or suppressing complement activation can significantly alleviate N protein-induced complement hyper-activation and lung injury in vitro and in vivo. Complement hyper-activation was also observed in COVID-19 patients, and a promising suppressive effect was observed when the deteriorating patients were treated with anti-C5a monoclonal antibody. Complement suppression may represent a common therapeutic approach for pneumonia induced by these highly pathogenic coronaviruses.One Sentence SummaryThe lectin pathway of complement activation is a promising target for the treatment of highly pathogenic coronavirus induced pneumonia.


2001 ◽  
Vol 114 (19) ◽  
pp. 3463-3477
Author(s):  
Shulamit B. Wallach-Dayan ◽  
Valentin Grabovsky ◽  
Jürgen Moll ◽  
Jonathan Sleeman ◽  
Peter Herrlich ◽  
...  

Cell motility is an essential element of tumor dissemination, allowing organ infiltration by cancer cells. Using mouse LB lymphoma cells transfected with standard CD44 (CD44s) cDNA (LB-TRs cells) or with the alternatively spliced CD44 variant CD44v4-v10 (CD44v) cDNA (LB-TRv cells), we explored their CD44-dependent cell migration. LB-TRv cells, but not LB-TRs or parental LB cells, bound soluble hyaluronic acid (HA) and other glycosaminoglycans (GAGs), and exclusively formed, under physiological shear force, rolling attachments on HA substrate. Furthermore, LB-TRv cells, but not LB-TRs cells or their parental LB cells, displayed accelerated local tumor formation and enhanced accumulation in the peripheral lymph nodes after s.c. inoculation. The aggressive metastatic behavior of i.v.-injected LB-TRV cells, when compared with that of other LB-transfectants, is attributed to more efficient migration to the lymph nodes, rather than to local growth in the lymph node. Injection of anti-CD44 monoclonal antibody or of the enzyme hyaluronidase also prevented tumor growth in lymph nodes of BALB/c mice inoculated with LB-TRv cells. The enhanced in vitro rolling and enhanced in vivo local tumor growth and lymph node invasion disappeared in LB cells transfected with CD44v cDNA bearing a point mutation at the HA binding site, located at the distal end of the molecule constant region. These findings show that the interaction of cell surface CD44v with HA promotes cell migration both in vitro and in vivo, and they contribute to our understanding of the mechanism of cell trafficking, including tumor spread.


1984 ◽  
Vol 70 (1) ◽  
pp. 9-16
Author(s):  
Mauro Boiocchi ◽  
Piera Mondellini

The monoclonal antibody A6, isolated during a study on the natural immunoresponse of BALB/c mice against leukemia cells (4), reacts with the envelope glycoproteins gp70 of the MuLV and with the cell surface of the SL2 AKR leukemia. In the present paper, we describe the in vivo immunotherapeutic effect exerted by the A6 monoclonal antibody on the growth of the transplanted leukemia SL2. The greater therapeutic effect observed when the A6 was used with exogenous complement cooperation suggests that the immunotherapeutic activity is mediated by C'-dependent cytotoxicity.


1998 ◽  
Vol 16 (6) ◽  
pp. 2169-2180 ◽  
Author(s):  
A L Yu ◽  
M M Uttenreuther-Fischer ◽  
C S Huang ◽  
C C Tsui ◽  
S D Gillies ◽  
...  

PURPOSE To evaluate the toxicity, immunogenicity, and pharmacokinetics of a human-mouse chimeric monoclonal antibody (mAb) ch 14.18 directed against disialoganglioside (GD2) and to obtain preliminary information on its clinical efficacy, we conducted a phase I trial in 10 patients with refractory neuroblastoma and one patient with osteosarcoma. PATIENTS AND METHODS Eleven patients were entered onto this phase I trial. They received 20 courses of mAb ch 14.18 at dose levels of 10, 20, 50, 100, and 200 mg/m2. Dose escalation was performed in cohorts of three patients; intrapatient dose escalation was also permitted. RESULTS The most prevalent toxicities were pain, tachycardia, hypertension, fever, and urticaria. Most of these toxicities were dose-dependent and rarely noted at dosages of 20 mg/m2 and less. Although the maximum-tolerated dose was not reached in this study, clinical responses were observed. These included one partial (PR) and four mixed responses (MRs) and one stable disease (SD) among 10 assessable patients. Biologic activity of ch 14.18 in vivo was shown by binding of ch 14.18 to tumor cells and complement-dependent cytotoxicity of posttreatment sera against tumor target cells. An anti-ch 14.18 immune response was detectable in seven of 10 patients studied. CONCLUSION In summary, with the dose schedule used, ch 14.18 appears to be clinically safe and effective, and repeated mAb administration was not associated with increased toxicities. Further clinical trials of mAb ch 14.18 in patients with neuroblastoma are warranted.


Sign in / Sign up

Export Citation Format

Share Document