scholarly journals The link between star formation and gas in nearby galaxies

2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Robert Feldmann

AbstractObservations of the interstellar medium are key to deciphering the physical processes regulating star formation in galaxies. However, observational uncertainties and detection limits can bias the interpretation unless carefully modeled. Here I re-analyze star formation rates and gas masses of a representative sample of nearby galaxies with the help of multi-dimensional Bayesian modeling. Typical star forming galaxies are found to lie in a ‘star forming plane’ largely independent of their stellar mass. Their star formation activity is tightly correlated with the molecular and total gas content, while variations of the molecular-gas-to-star conversion efficiency are shown to be significantly smaller than previously reported. These data-driven findings suggest that physical processes that modify the overall galactic gas content, such as gas accretion and outflows, regulate the star formation activity in typical nearby galaxies, while a change in efficiency triggered by, e.g., galaxy mergers or gas instabilities, may boost the activity of starbursts.

2021 ◽  
Vol 646 ◽  
pp. A127
Author(s):  
M. Hamed ◽  
L. Ciesla ◽  
M. Béthermin ◽  
K. Małek ◽  
E. Daddi ◽  
...  

Aims. We study a system of two galaxies, Astarte and Adonis, at z ∼ 2. At this time, the Universe was undergoing the peak of its star formation activity. Astarte is a dusty star-forming galaxy at the massive end of the main sequence (MS), and Adonis is a less massive companion galaxy that is bright in the ultraviolet and has an optical spectroscopic redshift. We investigate whether this ultramassive galaxy is quenching, and whether it has always been on the MS of star-forming galaxies. Methods. We used the code CIGALE to model the spectral energy distribution. The code relies on the energetic balance between the ultraviolet and the infrared. We derived some of the key physical properties of Astarte and Adonis, mainly their star formation rates (SFRs), stellar masses, and dust luminosities. We inspected the variation of the physical parameters depending on the assumed dust-attenuation law. We also estimated the molecular gas mass of Astarte from its CO emission, using different αCO and transition ratios (r31), and we discuss the implication of the various assumptions on the gas-mass derivation. Reults. We find that Astarte exhibits a MS-like star formation activity, and Adonis is undergoing a strong starburst phase. The molecular gas mass of Astarte is far lower than the gas fraction of typical star-forming galaxies at z = 2. This low gas content and high SFR result in a depletion time of 0.22 ± 0.07 Gyr, which is slightly shorter than expected for a MS galaxy at this redshift. The CO luminosity relative to the total infrared luminosity suggests a MS-like activity when we assume a galactic conversion factor and a low transition ratio. The SFR of Astarte is on the same order when different attenuation laws are used, unlike its stellar mass, which increases when shallow attenuation laws are used (∼1 × 1011 M⊙ assuming a Calzetti relation, versus ∼4 × 1011 M⊙ assuming a shallow attenuation law). We discuss these properties and suggest that Astarte might be experiencing a recent decrease in star formation activity and is quenching through the MS following a starburst epoch.


2020 ◽  
Vol 501 (2) ◽  
pp. 1900-1910
Author(s):  
Jonathan Freundlich ◽  
Nicolas F Bouché ◽  
Thierry Contini ◽  
Emanuele Daddi ◽  
Johannes Zabl ◽  
...  

ABSTRACT We present a pilot program using IRAM’s NOrthern Extended Millimeter Array (NOEMA) to probe the molecular gas reservoirs of six $z$ = 0.6–1.1 star-forming galaxies whose circumgalactic medium has been observed in absorption along quasar lines of sight as part of the MusE GAs FLOw and Wind (MEGAFLOW) survey and for which we have estimates of either the accretion or the outflow rate. This program is motivated by testing the quasi-equilibrium model and the compaction scenario describing the evolution of galaxies along the main sequence of star formation, which imply tight relations between the gas content, the star formation activity, and the amount of gas flowing in and out. We report individual carbon monoxide CO(4-3), CO(3-2), and dust continuum upper limits, as well as stacked CO detections over the whole sample and the three galaxies identified with outflows. The resulting molecular gas fractions and depletion times are compatible with published scaling relations established within a mass-selected sample, indicating that galaxies selected through their absorption follow similar relations on average. We further detect the dust continuum of three of the quasars and a strong emission line in one of them, which we identify as CO(4-3). Extending the sample to more galaxies and deeper observations will enable us to quantify how the molecular gas fraction and depletion time depend on the inflow and ouflow rates.


2015 ◽  
Vol 11 (S315) ◽  
pp. 26-29
Author(s):  
Julia Kamenetzky ◽  
Naseem Rangwala ◽  
Jason Glenn ◽  
Philip Maloney ◽  
Alex Conley

AbstractMolecular gas is the raw material for star formation and is commonly traced by the carbon monoxide (CO) molecule. The atmosphere blocks all but the lowest-J transitions of CO for observatories on the ground, but the launch of the Herschel Space Observatory revealed the CO emission of nearby galaxies from J = 4−3 to J = 13−12. Herschel showed that mid- and high-J CO lines in nearby galaxies are emitted from warm gas, accounting for approximately 10% of the molecular mass, but the majority of the CO luminosity. The energy budget of this warm, highly-excited gas is a significant window into the feedback interactions among molecular gas, star formation, and galaxy evolution. Likely, mechanical heating is required to explain the excitation. Such gas has also been observed in star forming regions within our galaxy.We have examined all ~300 spectra of galaxies from the Herschel Fourier Transform Spectrometer and measured line fluxes or upper limits for the CO J = 4−3 to J = 13−12, [CI], and [NII] 205 micron lines in ~200 galaxies, taking systematic effects of the FTS into account. We will present our line fitting method, illustrate trends available so far in this large sample, and preview the full 2-component radiative transfer likelihood modeling of the CO emission using an illustrative sample of 20 galaxies, including comparisons to well-resolved galactic regions. This work is a comprehensive study of mid- and high-J CO emission among a variety of galaxy types, and can be used as a resource for future (sub)millimeter studies of galaxies with ground-based instruments.


2001 ◽  
Vol 205 ◽  
pp. 348-349
Author(s):  
Kartik Sheth ◽  
S.N. Vogel ◽  
A.I. Harris ◽  
M.W. Regan ◽  
M.D. Thornley ◽  
...  

Using a sample of 7 barred spirals from the BIMA Survey of Nearby Galaxies (SONG), we compare the molecular gas distribution in the bar, to recent massive star formation activity. In all 7 galaxies, Hα is offset azimuthally from the CO on the downstream side. The maximum offset, at the bar ends, ranges from 170-570 pc, with an average of 320±120 pc. We discuss whether the observed offsets are consistent with the description of gas flows in bars provided by the two main classes of models: n-body models and hydrodynamic models.


2019 ◽  
Vol 622 ◽  
pp. A105 ◽  
Author(s):  
J. Freundlich ◽  
F. Combes ◽  
L. J. Tacconi ◽  
R. Genzel ◽  
S. Garcia-Burillo ◽  
...  

Following the success of the Plateau de Bure high-z Blue Sequence Survey (PHIBSS), we present the PHIBSS2 legacy program, a survey of the molecular gas properties of star-forming galaxies on and around the star-formation main sequence (MS) at different redshifts using IRAM’s NOrthern Extended Millimeter Array (NOEMA). This survey significantly extends the existing sample of star-forming galaxies with CO molecular gas measurements, probing the peak epoch of star formation (z = 1 − 1.6) as well as its building-up (z = 2 − 3) and winding-down (z = 0.5 − 0.8) phases. The targets are drawn from the well-studied GOODS, COSMOS, and AEGIS cosmological deep fields and uniformly sample the MS in the stellar mass (M⋆) – star formation rate (SFR) plane with log(M⋆/M⊙) = 10 − 11.8 and SFR = 3.5 − 500 M⊙ yr−1 without morphological selection, thus providing a statistically meaningful census of star-forming galaxies at different epochs. We describe the survey strategy and sample selection before focusing on the results obtained at redshift z = 0.5 − 0.8, where we report 60 CO(2-1) detections out of 61 targets. We determine molecular gas masses between 2 × 109 and 5 × 1010 M⊙ and separately obtain disc sizes and bulge-to-total (B/T) luminosity ratios from HST I-band images. The median molecular gas-to-stellar mass ratio μgas∼ = 0.28 ± 0.04, gas fraction fgas∼ = 0.22 ± 0.02, and depletion time $ \widetilde{t_{\mathrm{depl}}} = 0.84 \pm 0.07\,\mathrm{Gyr} $ as well as their dependence with stellar mass and offset from the MS follow published scaling relations for a much larger sample of galaxies spanning a significantly wider range of redshifts, the cosmic evolution of the SFR being mainly driven by that of the molecular gas fraction. The galaxy-averaged molecular Kennicutt–Schmidt (KS) relation between molecular gas and SFR surface densities is strikingly linear, pointing towards similar star formation timescales within galaxies at any given epoch. In terms of morphology, the molecular gas content, the SFR, the disc stellar mass, and the disc molecular gas fraction do not seem to correlate with B/T and the stellar surface density, which suggests an ongoing supply of fresh molecular gas to compensate for the build-up of the bulge. Our measurements do not yield any significant variation of the depletion time with B/T and hence no strong evidence for morphological quenching within the scatter of the MS.


2020 ◽  
Vol 635 ◽  
pp. A32 ◽  
Author(s):  
G. Castignani ◽  
F. Combes ◽  
P. Salomé ◽  
J. Freundlich

The mechanisms governing the stellar mass assembly and star formation history of brightest cluster galaxies (BCGs) are still being debated. By means of new and archival molecular gas observations we investigate the role of dense megaparsec-scale environments in regulating the fueling of star formation in distant BCGs, through cosmic time. We observed in CO with the IRAM 30 m telescope two star-forming BCGs belonging to SpARCS clusters, namely, 3C 244.1 (z = 0.4) and SDSS J161112.65+550823.5 (z = 0.9), and compared their molecular gas and star formation properties with those of a compilation of ∼100 distant cluster galaxies from the literature, including nine additional distant BCGs at z  ∼  0.4 − 3.5. We set robust upper limits of MH2 <  1.0 × 1010 M⊙ and < 2.8 × 1010 M⊙ to their molecular gas content, respectively, and to the ratio of molecular gas to stellar mass M(H2)/M⋆ ≲ 0.2 and depletion time τdep ≲ 40 Myr of the two targeted BCGs. They are thus among the distant cluster galaxies with the lowest gas fractions and shortest depletion times. The majority (64%±15% and 73%±18%) of the 11 BCGs with observations in CO have lower M(H2)/M⋆ values and τdep, respectively, than those estimated for main sequence galaxies. Statistical analysis also tentatively suggests that the values of M(H2)/M⋆ and τdep for the 11 BCGs deviates, with a significance of ∼2σ, from those of the comparison sample of cluster galaxies. A morphological analysis for a subsample of seven BCGs with archival HST observations reveals that 71%±17% of the BCGs are compact or show star-forming components or substructures. Our results suggest a scenario where distant star-forming BCGs assemble a significant fraction ∼16% of their stellar mass on the relatively short timescale ∼τdep, while environmental mechanisms might prevent the replenishment of gas feeding the star formation. We speculate that compact components also favor the rapid exhaustion of molecular gas and ultimately help to quench the BCGs. Distant star-forming BCGs are excellent targets for ALMA and for next-generation telescopes such as the James Webb Space Telescope.


2019 ◽  
Vol 15 (S352) ◽  
pp. 168-170
Author(s):  
Q. D’Amato ◽  
I. Prandoni ◽  
R. Gilli ◽  
M. Massardi ◽  
E. Liuzzo ◽  
...  

AbstractA large-scale structure has been recently discovered at z = 1.7, around a powerful FRII radio galaxy. Eight Star Forming Galaxies (SFGs) have been discovered within Δ z ≍ 0.0095 and at < 1 Mpc from the FRII, indicating that this is a signpost of a protocluster. Furthermore, a significant X-ray diffuse emission overlapping the Eastern lobe of the FRII has been detected. Protoclusters are the ideal targets to investigate the complex assembly processes leading to the formation of local galaxy clusters. We will exploit new ALMA CO(2-1) observations (PI: R. Gilli) of the entire region around the FRII galaxy to trace the molecular gas content, in order to discover new protocluster members. Coupling these measurements with the multi-wavelength data coverage available for this field, we aim at placing constrains on the physical conditions in which star formation occurs, and ultimately infer the role of the radio jets in triggering it.


2017 ◽  
Vol 608 ◽  
pp. A48 ◽  
Author(s):  
H. Dannerbauer ◽  
M. D. Lehnert ◽  
B. Emonts ◽  
B. Ziegler ◽  
B. Altieri ◽  
...  

It is not yet known if the properties of molecular gas in distant protocluster galaxies are significantly affected by their environment as galaxies are in local clusters. Through a deep, 64 h of effective on-source integration with the Australian Telescope Compact Array (ATCA), we discovered a massive, Mmol = 2.0 ± 0.2× 1011 M⊙, extended, ~40 kpc, CO(1–0)-emitting disk in the protocluster surrounding the radio galaxy, MRC 1138−262. The galaxy, at zCO = 2.1478, is a clumpy, massive disk galaxy, M∗ ~ 5 × 1011 M⊙, which lies 250 kpc in projection from MRC 1138−262 and is a known Hα emitter, named HAE229. This source has a molecular gas fraction of ~30%. The CO emission has a kinematic gradient along its major axis, centered on the highest surface brightness rest-frame optical emission, consistent with HAE229 being a rotating disk. Surprisingly, a significant fraction of the CO emission lies outside of the UV/optical emission. In spite of this, HAE229 follows the same relation between star-formation rate and molecular gas mass as normal field galaxies. HAE229 is the first CO(1–0) detection of an ordinary, star-forming galaxy in a protocluster. We compare a sample of cluster members at z > 0.4 thatare detected in low-order CO transitions, with a similar sample of sources drawn from the field. We confirm findings that the CO-luminosity and full-width at half maximum are correlated in starbursts and show that this relation is valid for normal high-z galaxies as well as for those in overdensities. We do not find a clear dichotomy in the integrated Schmidt-Kennicutt relation for protocluster and field galaxies. Our results suggest that environment does not have an impact on the “star-formation efficiency” or the molecular gas content of high-redshift galaxies. Not finding any environmental dependence in these characteristics, especially for such an extended CO disk, suggests that environmentally-specific processes such as ram pressure stripping do not operate efficiently in (proto)clusters.


2020 ◽  
Vol 641 ◽  
pp. A24
Author(s):  
Tsan-Ming Wang ◽  
Chorng-Yuan Hwang

We investigated the influence of the random velocity of molecular gas on star-formation activities of six nearby galaxies. The physical properties of a molecular cloud, such as temperature and density, influence star-formation activities in the cloud. Additionally, local and turbulent motions of molecules in a cloud may exert substantial pressure on gravitational collapse and thus prevent or reduce star formation in the cloud. However, the influence of gas motion on star-formation activities remains poorly understood. We used data from the Atacama Large Millimeter/submillimeter Array to obtain 12CO(J = 1 − 0) flux and velocity dispersion. We then combined these data with 3.6 and 8 micron midinfrared data from the Spitzer Space Telescope to evaluate the effects of gas motion on star-formation activities in several nearby galaxies. We discovered that relatively high velocity dispersion in molecular clouds corresponds with relatively low star-formation activity. Considering the velocity dispersion as an additional parameter, we derived a modified Kennicutt-Schmidt law with a gas surface density power index of 0.84 and velocity dispersion power index of −0.61.


2004 ◽  
Vol 221 ◽  
pp. 107-117
Author(s):  
Eva Schinnerer

High angular resolution observations of nearby galaxies in the optical using ground-based and space-based telescopes have not only revealed the presence of young stellar clusters, but also allowed to study their properties in various dynamical environments. These studies have shown that young massive clusters (YMCs) have typical masses of a few 1000 M⊙ and sizes of a few parsec irrespective of their site of formation (such as bulges, spiral arms, starburst rings, or mergers). This points toward a universal formation mechanism for these stellar clusters.Observations of the dust and gas content in high redshift galaxies allows one to study the reservoir for star formation in the early universe. These studies reveal extremely high star formation rates of a few 1000 M⊙ yr−1, while the distribution of the molecular gas still seems to be comparable to what is observed in the local universe. The detection of considerable amounts of molecular gas via its CO lines in the highest redshifted QSOs known today (up to z=6.4) indicates that star formation in the early universe has already produced considerable amounts of metals.


Sign in / Sign up

Export Citation Format

Share Document