scholarly journals Observation of a flat band and bandgap in millimeter-scale twisted bilayer graphene

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Keiju Sato ◽  
Naoki Hayashi ◽  
Takahiro Ito ◽  
Noriyuki Masago ◽  
Makoto Takamura ◽  
...  

AbstractMagic-angle twisted bilayer graphene, consisting of two graphene layers stacked at a special angle, exhibits superconductivity due to the maximized density of states at the energy of the flat band. Generally, experiments on twisted bilayer graphene have been performed using micrometer-scale samples. Here we report the fabrication of twisted bilayer graphene with an area exceeding 3 × 5 mm2 by transferring epitaxial graphene onto another epitaxial graphene, and observation of a flat band and large bandgap using angle-resolved photoemission spectroscopy. Our results suggest that the substrate potential induces both the asymmetrical doping in large angle twisted bilayer graphene and the electron doped nature of the flat band in magic-angle twisted bilayer graphene.

2019 ◽  
Vol 5 (9) ◽  
pp. eaaw9770 ◽  
Author(s):  
Emilio Codecido ◽  
Qiyue Wang ◽  
Ryan Koester ◽  
Shi Che ◽  
Haidong Tian ◽  
...  

The emergence of flat bands and correlated behaviors in “magic angle” twisted bilayer graphene (tBLG) has sparked tremendous interest, though its many aspects are under intense debate. Here we report observation of both superconductivity and the Mott-like insulating state in a tBLG device with a twist angle of ~0.93°, which is smaller than the magic angle by 15%. At an electron concentration of ±5 electrons/moiré unit cell, we observe a narrow resistance peak with an activation energy gap ~0.1 meV. This indicates additional correlated insulating state, and is consistent with theory predicting a high-energy flat band. At doping of ±12 electrons/moiré unit cell we observe resistance peaks arising from the Dirac points in the spectrum. Our results reveal that the “magic” range of tBLG is in fact larger than what is previously expected, and provide a wealth of new information to help decipher the strongly correlated phenomena observed in tBLG.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nikhil Tilak ◽  
Xinyuan Lai ◽  
Shuang Wu ◽  
Zhenyuan Zhang ◽  
Mingyu Xu ◽  
...  

AbstractMagic-angle twisted bilayer graphene has emerged as a powerful platform for studying strongly correlated electron physics, owing to its almost dispersionless low-energy bands and the ability to tune the band filling by electrostatic gating. Techniques to control the twist angle between graphene layers have led to rapid experimental progress but improving sample quality is essential for separating the delicate correlated electron physics from disorder effects. Owing to the 2D nature of the system and the relatively low carrier density, the samples are highly susceptible to small doping inhomogeneity which can drastically modify the local potential landscape. This potential disorder is distinct from the twist angle variation which has been studied elsewhere. Here, by using low temperature scanning tunneling spectroscopy and planar tunneling junction measurements, we demonstrate that flat bands in twisted bilayer graphene can amplify small doping inhomogeneity that surprisingly leads to carrier confinement, which in graphene could previously only be realized in the presence of a strong magnetic field.


2020 ◽  
Author(s):  
Nikhil Tilak ◽  
xinyuan lai ◽  
Shuang Wu ◽  
Zhenyuan Zhang ◽  
Mingyu Xu ◽  
...  

Abstract Magic angle twisted bilayer graphene has emerged as a powerful platform for studying strongly correlated electron physics, owing to its almost dispersionless low-energy bands and the ability to tune the band filling by electrostatic gating. Techniques to control the twist angle between graphene layers have led to rapid experimental progress, but improving sample quality is essential for separating the delicate correlation physics from disorder effects. Owing to the 2D nature of the system and the relatively low carrier density, the samples are highly susceptible to small doping inhomogeneity which can drastically modify the local potential landscape. This potential disorder is distinct from the twist-angle variation which has been studied elsewhere. Understanding and mitigating the effects of such disorder is important. Here, we demonstrate using low temperature scanning tunneling spectroscopy and planar tunneling junction measurements, how flat bands in twisted bilayer graphene can amplify small doping inhomogeneity leading to carrier confinement, thus obscuring magic-angle physics.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Tobias A. de Jong ◽  
Tjerk Benschop ◽  
Xingchen Chen ◽  
Eugene E. Krasovskii ◽  
Michiel J. A. de Dood ◽  
...  

AbstractIn ‘magic angle’ twisted bilayer graphene (TBG) a flat band forms, yielding correlated insulator behavior and superconductivity. In general, the moiré structure in TBG varies spatially, influencing the overall conductance properties of devices. Hence, to understand the wide variety of phase diagrams observed, a detailed understanding of local variations is needed. Here, we study spatial and temporal variations of the moiré pattern in TBG using aberration-corrected Low Energy Electron Microscopy (AC-LEEM). We find a smaller spatial variation than reported previously. Furthermore, we observe thermal fluctuations corresponding to collective atomic displacements over 70 pm on a timescale of seconds. Remarkably, no untwisting is found up to 600 ∘C. We conclude that thermal annealing can be used to decrease local disorder. Finally, we observe edge dislocations in the underlying atomic lattice, the moiré structure acting as a magnifying glass. These topological defects are anticipated to exhibit unique local electronic properties.


Author(s):  
Folkert K. de Vries ◽  
Elías Portolés ◽  
Giulia Zheng ◽  
Takashi Taniguchi ◽  
Kenji Watanabe ◽  
...  

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Turgut Yilmaz ◽  
Xiao Tong ◽  
Zhongwei Dai ◽  
Jerzy T. Sadowski ◽  
Eike F. Schwier ◽  
...  

AbstractFlat band electronic states are proposed to be a fundamental tool to achieve various quantum states of matter at higher temperatures due to the enhanced electronic correlations. However, materials with such peculiar electronic states are rare and often rely on subtle properties of the band structures. Here, by using angle-resolved photoemission spectroscopy, we show the emergent flat band in a VSe2 / Bi2Se3 heterostructure. Our photoemission study demonstrates that the flat band covers the entire Brillouin zone and exhibits 2D nature with a complex circular dichroism. In addition, the Dirac cone of Bi2Se3 is not reshaped by the flat band even though they overlap in proximity of the Dirac point. These features make this flat band distinguishable from the ones previously found. Thereby, the observation of a flat band in the VSe2 / Bi2Se3 heterostructure opens a promising pathway to realize strongly correlated quantum effects in topological materials.


Sign in / Sign up

Export Citation Format

Share Document