scholarly journals Posterior/anterior combined surgery for thoracolumbar burst fractures—posterior instrumentation with pedicle screws and laminar hooks, anterior decompression and strut grafting

Spinal Cord ◽  
2010 ◽  
Vol 49 (4) ◽  
pp. 573-579 ◽  
Author(s):  
M Machino ◽  
Y Yukawa ◽  
K Ito ◽  
H Nakashima ◽  
F Kato
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Xuhong Xue ◽  
Sheng Zhao

Abstract Background The management of thoracolumbar burst fractures traditionally involves posterior pedicle screw fixation, but it has some drawbacks. The aim of this study is to evaluate the clinical and radiological outcomes of patients with thoracolumbar burst fractures. They were treated by a modified technique that monoaxial pedicle screws instrumentation and distraction-compression technology assisted end plate reduction. Methods From March 2014 to February 2016, a retrospective study including 42 consecutive patients with thoracolumbar burst fractures was performed. The patients had undergone posterior reduction and instrumentation with monoaxial pedicle screws. The fractured vertebrae were also inserted screws as a push point. The distraction -compression technology was used as assisting end plate reduction. All patients were followed up at a minimum of 2 years. These parameters including segmental kyphosis, severity of fracture, neurological function, canal compromise and back pain were evaluated in preoperatively, postoperatively and at the final follow-up. Results The average follow-up period was 28.9 ± 4.3 months (range, 24-39mo). No patients had postoperative implant failure at recent follow-up. The mean Cobb angle of the kyphosis was improved from 14.2°to 1.1° (correction rate 92.1%). At final follow-up there was 1.5% loss of correction. The mean preoperative wedge angle was improved from 17.1 ± 7.9°to 4.4 ± 3.7°(correction rate 74.3%). The mean anterior and posterior vertebral height also showed significant improvements postoperatively, which were maintained at the final follow-up(P < 0.05). The mean visual analogue scale (VAS) scores was 8 and 1.6 in preoperation and at the last follow-up, and there was significant difference (p < 0.05). Conclusion Based on our experience, distraction-compression technology can assist reduction of collapsed endplate directly. Satisfactory fracture reduction and correction of segmental kyphosis can be achieved and maintained with the use of monoaxial pedicle screw fixation including the fractured vertebra. It may be a good treatment approach for thoracolumbar burst fractures.


2001 ◽  
Vol 50 (2) ◽  
pp. 349-353
Author(s):  
Yuichi Arizumi ◽  
Naoya Tajima ◽  
Shinichiro Kubo ◽  
Hiroshi Kuroki ◽  
Keisuke Goto ◽  
...  

2002 ◽  
Vol 9 (4) ◽  
pp. 364 ◽  
Author(s):  
Ho-Guen Chang ◽  
Young-Woo Kim ◽  
Jong-Churel Jung ◽  
Hyeong-Su Kim ◽  
Kee-Byoung Lee

2011 ◽  
Vol 117-119 ◽  
pp. 699-702 ◽  
Author(s):  
Dong Mei Wang ◽  
Du Fang Shi ◽  
Xi Lei Li ◽  
Jian Dong ◽  
Chun Hui Wang ◽  
...  

This study was designed to compare the biomechanical effects of three posterior fixations for thoracolumbar burst fractures using the finite element (FE) method. Five T11-L1 FE models, including the intact, the fractured at T12, the monosegment fixated at the level of the fracture, the short-segment fixated with four pedicle screws and the short-segment fixated with five pedicle screws, were created. And four loading conditions (flexion, extension, lateral bending and torsion) were imposed on these models and deformations in these models under different loading conditions were calculated by finite element method. The biomechanical effects of the three different pedicle screw fixations for thoracolumbar burst fractures were compared and analyzed. The results showed that the displacement level in monosegment fixation model was close to that in the intact one. The extension motion was more limited in short-segment fixation models than that in monosegment fixation model. Under the lateral bending condition, the level of the displacements in these models were similar and the peak rotation angles in the three fixation models were close to that in the intact one. The displacements in fractured T12 were increased in monosegment fixation model under all loading conditions. These indicated that the monosegment fixation couldn’t provide desirable stability for the fractured T11-L1 and the short-segment fixation with five pedicle screws was the best selection because of ideal stability and movability.


2018 ◽  
Vol 20 (3) ◽  
pp. 211-217 ◽  
Author(s):  
Misbah Mehraj ◽  
Farid H. Malik

Background. We did a prospective study to study the efficiency of Short Segment Posterior Instrumentation using a Universal Spine System with incorporation of the fractured vertebra in post-traumatic thoracic and lumbar spine fractures. Material and methods. 25 cases in the age group of I5-50 years with thoracic and lumbar spine fractures were included in the study. The operative decision was made on the basis of instability of spine fractures with or without neurological deficit. Patients were followed up for an average period of twelve months, reporting for assessment at 3-monthly intervals. The final result was analyzed on the basis of neurological recovery as per Frankel’s Grading, spine stability as per kyphotic angle by Cobb’s method, vertebral body height and complications. Results. Post-operatively at the final follow-up visit, 36% patients had Frankel’s grade E neurological status. The mean sagittal plane kyphosis pre-operatively was 31.16°, which reduced to 21.52° post-operatively, which represents 30.93% reduction. Mean anterior body compression was 38.6°, which decreased to 23.4° post-operatively, corresponding to 15% increase. Conclusions. 1. Although conventional short segment posterior fixation (SSPF) has become an increasingly popular method of treatment of thoracolumbar burst fractures, providing the advantage of incorporating fewer motion segments in the fixation, a review of literature demonstrated that SSPF led to 9-55% incidence of implant failure and long term loss of kyphosis correction. 2. Short segment posterior fixation with pedicle fixation at the level of the fractured vertebra (short same-segment fixation) provides more biomechanical stability than traditional SSPF.


BMJ Open ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. e024110 ◽  
Author(s):  
Zhi-Chao Hu ◽  
Xiao-Bin Li ◽  
Zhen-Hua Feng ◽  
Ji-Qi Wang ◽  
Lan-Fang Gong ◽  
...  

IntroductionThe optimal treatment for burst fractures of the thoracolumbar spine is controversial. The addition of screws in the fractured segment has been shown to improve construct stiffness, but can aggravate the trauma to the fractured vertebra. Therefore, optimised placement of two pedicle screws at the fracture level is required for the treatment of thoracolumbar burst fractures. This randomised controlled study is the first to examine the efficacy of diverse orders of pedicle screw placement and will provide recommendations for the treatment of patients with thoracolumbar burst fractures.Methods and analysisA randomised controlled trial with blinding of patients and the statistician, but not the clinicians and researchers, will be conducted. A total of 70 patients with single AO type A3 or A4 thoracolumbar fractures who are candidates for application of short-segment pedicle screws at the fractured vertebral level will be allocated randomly to the distraction-screw and screw-distraction groups at a ratio of 1:1. The primary clinical outcome measures will be the percentage loss of vertebral body height, screw depth in the injured vertebrae and kyphosis (Cobb angle). Secondary clinical outcome measures will be complications, Visual Analogue Scale scores for back and leg pain, neurological function, operation time, intraoperative blood loss, Japanese Orthopaedic Association score and Oswestry Disability Index. These parameters will be evaluated preoperatively, intraoperatively, on postoperative day 3, and at 1, 3, 6, 12 and 24 months postoperatively.Ethics and disseminationThe Institutional Review Board of the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University have reviewed and approved this study (batch: LCKY2018-05). The results will be presented in peer-reviewed journals and at an international spine-related meeting after completion of the study.Trial registration numberNCT03384368; Pre-results.


Sign in / Sign up

Export Citation Format

Share Document