Illumination from Large Area Light Sources—II

1914 ◽  
Vol 77 (1988supp) ◽  
pp. 82-83
Author(s):  
Herbert E. Ives
Keyword(s):  
2015 ◽  
Vol 4 (1) ◽  
Author(s):  
Wolfgang Mönch

AbstractThe intention of this article is to give a concise overview on current applications of micro-optical components in lighting, including general lighting, automotive lighting, projection, and display backlighting. Regarding the light sources, the focus of this paper is on inorganic light-emitting diodes (LEDs) and the characteristic problems encountered with them. Lasers, laser diodes, and organic light-emitting diodes (OLEDs) are out of scope of this paper. Micro-optical components for current applications of inorganic LEDs may be categorized essentially into three classes: First, components for light shaping, i.e., adjusting the intensity distribution to a desired target; second, components for light homogenization with respect to space and color, and third, large-area micro-optical elements. These large-area elements comprise micro-optical slabs and sheets for guiding, reflection, and refraction of light and are designed without regard to particular details of type, design, arrangement, and layout of the individual light emitters. References are given to textbooks and review articles to guide the interested reader to further and more detailed studies on the problems discussed here.


2012 ◽  
Vol 80 ◽  
pp. 14-21 ◽  
Author(s):  
Silvia Janietz ◽  
Björn Gruber ◽  
Sylvia Schattauer ◽  
Kerstin Schulze

In place of silicon, which is normally used in microelectronics, organic materials offer the opportunity to produce devices on large area, low-cost and plastic planar substrates. These materials are attracting increased attention also in the field of electronic-textiles (e-textiles) because they show an interesting combination of electronic and mechanical properties that can be favourably exploited in smart textiles. A key step for the integration of mass production of e-textiles is to combine electronic production with textile manufactures. In the last years, progress has been achieved in the development of fibers and their processing for application in e-textiles. The application ranged from fabric integrated light sources to low cost solid state lighting for protection and security. Here research results are presented regarding the integration of encapsulated glass OLEDs and additionally OLEDs fabricated on flexible high barrier substrates which were integrated into textiles. On the other hand, the first results concerning the realization of an OLED on cylindrical surfaces based on solution processed technologies which is a first step in the direction of low cost processing will be discussed. A simple, inverted planar construction prepared from solution was realized. This preliminary work was the precondition for the development of a fiber based OLED. In addition, OLEDs that were prepared using glass fibers as substrates and solution processed active and hole-transport layers will be shown.


2009 ◽  
Vol 1212 ◽  
Author(s):  
Sebastian Reineke ◽  
Frank Lindner ◽  
Gregor Schwartz ◽  
Nico Seidler ◽  
Karsten Walzer ◽  
...  

AbstractWhite organic LEDs are seen as one of the next generation light-sources, with their potential to reach internal efficiencies of unity and their unique appearance as large-area and ultrathin devices. However, to replace existing lighting technologies, they have to be at least on par with the state-of-the-art. In terms of efficiency, the fluorescent tube with 60-70 lumen per Watt (lm W-1) in a fixture is the current benchmark. In the scientific literature, so far only values of 44 lm W-1 have been published for white OLEDs.Here, we present results (Reineke et al., Nature 459, 234 (2009)) of white OLEDs with 90 lm W-1 at an illumination relevant brightness of 1,000 candela per square meter (cd m-2). Extracting all light from the glass substrate using a 3D light extraction system, we even obtain 124 lm W-1. In order to achieve such high efficacy values, we reduced the energetic losses prior to photon emission that include ohmic and thermal relaxation losses, leading to very low operating voltages. This is accomplished by the use of doped transport layers and a novel, very energy efficient emission layer concept. Equally important, we addressed the optics of the OLED architecture, because about 80% of the generated light remains trapped in conventional devices. Therefore, we used high refractive index substrates to couple out more light and placed the emission to the second field antinode to avoid plasmonic losses. Our devices are also characterized by an outstandingly high efficiency at high brightness, reaching 74 lm W-1 at 5,000 cd m-2.


Polymers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1338
Author(s):  
Swarup Biswas ◽  
Hyeok Kim

The Internet of things (IoT) has been rapidly growing in the past few years. IoT connects numerous devices, such as wireless sensors, actuators, and wearable devices, to optimize and monitor daily activities. Most of these devices require power in the microwatt range and operate indoors. To this end, a self-sustainable power source, such as a photovoltaic (PV) cell, which can harvest low-intensity indoor light, is appropriate. Recently, the development of highly efficient PV cells for indoor applications has attracted tremendous attention. Therefore, different types of PV materials, such as inorganic, dye-sensitized, organic, and perovskite materials, have been employed for harvesting low-intensity indoor light energy. Although considerable efforts have been made by researchers to develop low-cost, stable, and efficient PV cells for indoor applications, Extensive investigation is necessary to resolve some critical issues concerning PV cells, such as environmental stability, lifetime, large-area fabrication, mechanical flexibility, and production cost. To address these issues, a systematic review of these aspects will be highly useful to the research community. This study discusses the current status of the development of indoor PV cells based on previous reports. First, we have provided relevant background information. Then, we have described the different indoor light sources, and subsequently critically reviewed previous reports regarding indoor solar cells based on different active materials such as inorganic, dye-sensitized, organic, and perovskite. Finally, we have placed an attempt to provide insight into factors needed to further improve the feasibility of PV technology for indoor applications.


Author(s):  
Alexander Kaltashov ◽  
Prabu Karthick Parameshwar ◽  
Nicholas Lin ◽  
Christopher Moraes

Abstract Photolithography is an essential microfabrication process in which ultraviolet (UV) light is projected through a mask to selectively expose and pattern a light-sensitive photoresist. Conventional photolithography devices are based on a stationary UV lamp and require carefully-designed optics to ensure that a uniform exposure dose is provided across the substrate being patterned. Access to such systems is typically limited to certain labs with domain-specific expertise and sufficient resources. The emergence of LED-based UV technologies has provided improved access to the necessary light sources, but issues with uniformity and limited exposure sizes still remain. In this work, we explore the use of a moving light source (MOLIS) for large-area lithography applications, in which the light source path speed, elevation, and movement pattern can be used to smooth out any spatial variations in source light intensity profiles, and deliver a defined and uniform cumulative UV exposure dose to a photoresist-coated substrate. By repurposing a 3D printer and UV-LED flashlight, we constructed an inexpensive MOLIS platform, simulated and verified the parameters needed to produce a uniform UV dose exposure, and demonstrate this approach for SU-8 microfabrication of features with dimensions relevant to many areas in biomedical engineering. The ready accessibility and inexpensive nature of this approach may be of considerable value to small laboratories interested in occasional and low-throughput prototype microfabrication applications.


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2395
Author(s):  
Zhi Ting Ye ◽  
Yuan Heng Cheng ◽  
Ku Huan Liu ◽  
Kai Shiang Yang

Mini-light-emitting diodes (mini-LEDs) were combined with multiple three-dimensional (3D) diffuse reflection cavity arrays (DRCAs) to produce thin, large-area, high-brightness, flat light source modules. The curvature of the 3D free-form DRCA was optimized to control its light path; this increased the distance between light sources and reduced the number of light sources used. Experiments with a 12.3-inch prototype indicated that 216 mini-LEDs were required for a 6 mm optical mixing distance to achieve a thin, large-area surface with high brightness, uniformity, and color saturation of 23,044 cd/m2, 90.13%, and 119.2, respectively. This module can serve as the local dimming backlight in next generation automotive displays.


1914 ◽  
Vol 77 (1987supp) ◽  
pp. 70-71
Author(s):  
Herbert E. Ives
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document