Accessible, large-area, uniform dose photolithography using a moving light source

Author(s):  
Alexander Kaltashov ◽  
Prabu Karthick Parameshwar ◽  
Nicholas Lin ◽  
Christopher Moraes

Abstract Photolithography is an essential microfabrication process in which ultraviolet (UV) light is projected through a mask to selectively expose and pattern a light-sensitive photoresist. Conventional photolithography devices are based on a stationary UV lamp and require carefully-designed optics to ensure that a uniform exposure dose is provided across the substrate being patterned. Access to such systems is typically limited to certain labs with domain-specific expertise and sufficient resources. The emergence of LED-based UV technologies has provided improved access to the necessary light sources, but issues with uniformity and limited exposure sizes still remain. In this work, we explore the use of a moving light source (MOLIS) for large-area lithography applications, in which the light source path speed, elevation, and movement pattern can be used to smooth out any spatial variations in source light intensity profiles, and deliver a defined and uniform cumulative UV exposure dose to a photoresist-coated substrate. By repurposing a 3D printer and UV-LED flashlight, we constructed an inexpensive MOLIS platform, simulated and verified the parameters needed to produce a uniform UV dose exposure, and demonstrate this approach for SU-8 microfabrication of features with dimensions relevant to many areas in biomedical engineering. The ready accessibility and inexpensive nature of this approach may be of considerable value to small laboratories interested in occasional and low-throughput prototype microfabrication applications.

2009 ◽  
Vol 56 (4) ◽  
pp. 207-212 ◽  
Author(s):  
Gorjana Popovic ◽  
Roze Djokic

Light from the polymerization source which initiates photopolymerization in the material has its determined wavelength. Photoinitiator, such as camphorhinone, excited by light, can be activated with any of the wavelength from its absorption spectrum. To obtain successful photopolymerization, light source should emit waves of adequate wavelength; light intensity has to be optimal, to have sufficient time of exposure and material up to 2 mm thickness. Photoinitiator inside the material should match light source spectrum and work regime. Halogen lamps have wide spectra of wavelengths in the visible part of the light spectrum. Their spectra are similar to absorption spectrum of camphorhinone. Plasma (xenon) lamps emit blue light. Though their diapason is low, spectra have great intensity. Adequate diapason and easy excitation allow them to have short time of exposure. LED lamps have blue diodes as light source. They do not need filters due to narrow emission spectrum. Laser (argon) lamps are the only that emit linear spectra. Ultraviolet (mercury) lamps are not in use any more in dentistry; theirs initiators were activated by UV light. LED lamps have longer life time; do not change the spectra during time, warm less, do not need filters, allow change of the source for more powerful, more efficient and more advantageous two steps or impulse illumination mode. However, LED lamps can not be used for a material that has photoinitiator(s) activated by light with wavelength above the maximum of the LED spectra.


2013 ◽  
Vol 543 ◽  
pp. 265-268
Author(s):  
Ana V. Joža ◽  
Dragan Z. Stupar ◽  
Jovan S. Bajić ◽  
Bojan M. Dakić ◽  
Zoran Mijatović ◽  
...  

An end-type fiber-optic UV sensor based on the principle of fluorescence is proposed and demonstrated. The sensor is made of large-core plastic optical fiber with one end covered with mixture of hot melt adhesive and small amount of chlorophyll. As sources of ultraviolet radiation solar simulator and UV lamp are used. Spectra on the sensor output are measured with spectrometer and compared for different UV light sources. Both hot melt adhesive and chlorophyll reacted to UV radiation. The peaks of fluorescent emission are obtained in visible spectrum in range of blue wavelengths (for hot melt adhesive) and in range of red wavelengths (for chlorophyll), which makes this sensor configuration a good solution for signal multiplexing.


2019 ◽  
Vol 18 (2) ◽  
pp. 328-335 ◽  
Author(s):  
Satoshi Horikoshi ◽  
Daisuke Yamamoto ◽  
Kenta Hagiwara ◽  
Akihiro Tsuchida ◽  
Isamu Matsumoto ◽  
...  

Constraints on light sources that use mercury (arc lamps) are evolving with the establishment of the Minamata Convention, which has led to the proliferation of LEDs.


2020 ◽  
Vol 10 (10) ◽  
pp. 3564
Author(s):  
Qiushi Zhang ◽  
Xin Zhang ◽  
Lingjie Wang ◽  
Guangwei Shi ◽  
Qiang Fu ◽  
...  

Since the atmosphere has a strong scattering effect on ultraviolet light, the transmission of non-line-of-sight (NLOS) signals can be realized in the atmosphere. In previous articles, ultraviolet (UV) light atmospheric scattering has been characterized by many scattering models based on spot light sources with uniformly distributed light intensity. In order to explore the role of light sources in atmospheric transmission, this work proposed a UV light atmospheric transport model under different types of light source, including light-emitting diode (LED), laser, and ordinary light sources, based on the Monte Carlo point probability method. The simulation of the light source in the proposed model is a departure from the use of a light source with uniform intensity distribution in previous articles. The atmospheric transmission efficiency of different light sources was calculated and compared with the data of existing models. The simulation results showed that the type of light source can significantly change the shape of the received signal and the received energy density. The Monte Carlo (MC) point probability method dramatically reduced the calculation time and the number of photons. The transmission characteristics of different ultraviolet light sources in the atmosphere provide a theoretical foundation for the design of ultraviolet detection and near-ultraviolet signal communication in the future.


Lab on a Chip ◽  
2015 ◽  
Vol 15 (1) ◽  
pp. 57-61 ◽  
Author(s):  
M. Erickstad ◽  
E. Gutierrez ◽  
A. Groisman

An LED-based UV-light source producing collimated uniform illumination over a large area is built and used to fabricate PDMS microchannels with near-rectangular profiles and depths up to 300 μm.


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2395
Author(s):  
Zhi Ting Ye ◽  
Yuan Heng Cheng ◽  
Ku Huan Liu ◽  
Kai Shiang Yang

Mini-light-emitting diodes (mini-LEDs) were combined with multiple three-dimensional (3D) diffuse reflection cavity arrays (DRCAs) to produce thin, large-area, high-brightness, flat light source modules. The curvature of the 3D free-form DRCA was optimized to control its light path; this increased the distance between light sources and reduced the number of light sources used. Experiments with a 12.3-inch prototype indicated that 216 mini-LEDs were required for a 6 mm optical mixing distance to achieve a thin, large-area surface with high brightness, uniformity, and color saturation of 23,044 cd/m2, 90.13%, and 119.2, respectively. This module can serve as the local dimming backlight in next generation automotive displays.


1914 ◽  
Vol 77 (1988supp) ◽  
pp. 82-83
Author(s):  
Herbert E. Ives
Keyword(s):  

2019 ◽  
pp. 101-107
Author(s):  
Sergei A. Stakharny

This article is a review of the new light source – organic LEDs having prospects of application in general and special lighting systems. The article describes physical principles of operation of organic LEDs, their advantages and principal differences from conventional non-organic LEDs and other light sources. Also the article devoted to contemporary achievements and prospects of development of this field in the spheres of both general and museum lighting as well as other spheres where properties of organic LEDs as high-quality light sources may be extremely useful.


2015 ◽  
Vol 135 (9) ◽  
pp. 1049-1054
Author(s):  
Norio Ichikawa ◽  
Kohei Ikeda ◽  
Yoshinori Honda ◽  
Hiroyuki Taketomi ◽  
Koji Kawai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document