scholarly journals Rapid actions of calcitriol and its side chain analogues CB1093 and GS1500 on intracellular calcium levels in skeletal muscle cells: a comparative study

1999 ◽  
Vol 126 (8) ◽  
pp. 1815-1823 ◽  
Author(s):  
Guillermo Vazquez ◽  
Juana Sellés ◽  
Ana Russo De Boland ◽  
Ricardo Boland
1999 ◽  
Vol 269 (2) ◽  
pp. 110-114 ◽  
Author(s):  
Clarisse Vandebrouck ◽  
Nathalie Imbert ◽  
Gérard Duport ◽  
Christian Cognard ◽  
Guy Raymond

2017 ◽  
Vol 122 (3) ◽  
pp. 683-694 ◽  
Author(s):  
Syotaro Obi ◽  
Toshiaki Nakajima ◽  
Takaaki Hasegawa ◽  
Hironobu Kikuchi ◽  
Gaku Oguri ◽  
...  

Interleukin-6 (IL-6) is released from skeletal muscle cells and induced by exercise, heat, catecholamine, glucose, lipopolysaccharide, reactive oxygen species, and inflammation. However, the mechanism that induces release of IL-6 from skeletal muscle cells remains unknown. Thermosensitive transient receptor potential (TRP) proteins such as TRPV1–4 play vital roles in cellular functions. In this study we hypothesized that TRPV1 senses heat, transmits a signal into the nucleus, and produces IL-6. The purpose of the present study is to investigate the underlying mechanisms whereby skeletal muscle cells sense and respond to heat. When mouse myoblast cells were exposed to 37–42°C for 2 h, mRNA expression of IL-6 increased in a temperature-dependent manner. Heat also increased IL-6 secretion in myoblast cells. A fura 2 fluorescence dual-wavelength excitation method showed that heat increased intracellular calcium flux in a temperature-dependent manner. Intracellular calcium flux and IL-6 mRNA expression were increased by the TRPV1 agonists capsaicin and N-arachidonoyldopamine and decreased by the TRPV1 antagonists AMG9810 and SB366791 and siRNA-mediated knockdown of TRPV1. TRPV2, 3, and 4 agonists did not change intracellular calcium flux. Western blotting with inhibitors demonstrated that heat increased phosphorylation levels of TRPV1, followed by PKC and cAMP response element-binding protein (CREB). PKC inhibitors, Gö6983 and staurosporine, CREB inhibitors, curcumin and naphthol AS-E, and knockdown of CREB suppressed the heat-induced increases in IL-6. These results indicate that heat increases IL-6 in skeletal muscle cells through the TRPV1, PKC, and CREB signal transduction pathway.NEW & NOTEWORTHY Heat increases the release of interleukin-6 (IL-6) from skeletal muscle cells. IL-6 has been shown to serve immune responses and metabolic functions in muscle. It can be anti-inflammatory as well as proinflammatory. However, the mechanism that induces release of IL-6 from skeletal muscle cells remains unknown. Here we show that heat increases IL-6 in skeletal muscle cells through the transient receptor potential vannilloid 1, PKC, and cAMP response element-binding protein signal transduction pathway.


2000 ◽  
Vol 279 (1) ◽  
pp. E132-E139 ◽  
Author(s):  
Manuel Estrada ◽  
José Luis Liberona ◽  
Manuel Miranda ◽  
Enrique Jaimovich

Fast nongenomic steroid actions in several cell types seem to be mediated by second messengers such as intracellular calcium ([Ca2+]i) and inositol 1,4,5-trisphosphate (IP3). We have shown the presence of both slow calcium transients and IP3 receptors associated with cell nuclei in cultured skeletal muscle cells. The effect of steroids on [Ca2+]i was monitored in Fluo 3-acetoxymethyl ester-loaded myotubes by either confocal microscopy or fluorescence microscopy, with the use of out-of-focus fluorescence elimination. The mass of IP3 was determined by radioreceptor displacement assay. [Ca2+]ichanges after either aldosterone (10–100 nM) or testosterone (50–100 nM) were observed; a relatively fast (<2 min) calcium transient, frequently accompanied by oscillations, was evident with both hormones. A slow rise in [Ca2+]i that reached its maximum after a 30-min exposure to aldosterone was also observed. Calcium responses seem to be fairly specific for aldosterone and testosterone, because several other steroid hormones do not induce detectable changes in fluorescence, even at 100-fold higher concentrations. The mass of IP3 increased transiently to reach two- to threefold the basal level 45 s after addition of either aldosterone or testosterone, and the IP3transient was more rapid than the fast calcium signal. Spironolactone, an inhibitor of the intracellular aldosterone receptor, or cyproterone acetate, an inhibitor of the testosterone receptor, had no effect on the fast [Ca2+]i signal or in the increase in IP3 mass. These signals could mean that there are distinct nongenomic pathways for the action of these two steroids in skeletal muscle cells.


Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381
Author(s):  
II Ezeigbo ◽  
C Wheeler-Jones ◽  
S Gibbons ◽  
ME Cleasby

Sign in / Sign up

Export Citation Format

Share Document