scholarly journals Bradykinin-induced, endothelium-dependent responses in porcine coronary arteries: involvement of potassium channel activation and epoxyeicosatrienoic acids

2005 ◽  
Vol 145 (6) ◽  
pp. 775-784 ◽  
Author(s):  
Arthur H Weston ◽  
Michel Félétou ◽  
Paul M Vanhoutte ◽  
John R Falck ◽  
William B Campbell ◽  
...  
Hypertension ◽  
2005 ◽  
Vol 45 (4) ◽  
pp. 681-686 ◽  
Author(s):  
Wenqi Yang ◽  
Kathryn M. Gauthier ◽  
L. Manmohan Reddy ◽  
Bhavani Sangras ◽  
Kamalesh K. Sharma ◽  
...  

1993 ◽  
Vol 264 (2) ◽  
pp. H327-H335 ◽  
Author(s):  
M. Rosolowsky ◽  
W. B. Campbell

Metabolites of arachidonic acid regulate several physiological processes, including vascular tone. The purpose of this study was to determine which metabolites of arachidonic acid are produced by bovine coronary arteries and which may regulate coronary vascular tone. Arachidonic acid induced a concentration-related, endothelium-dependent relaxation [one-half maximum effective concentration (EC50) of 2 x 10(-7) M and a maximal relaxation of 91 +/- 2% at 10(-5) M] of bovine coronary arteries that were contracted with U-46619, a thromboxane mimetic. The concentration of 6-ketoprostaglandin F1 alpha (6-keto-PGF1 alpha), a metabolite of prostaglandin I2 (PGI2), increased from 82 +/- 6 to 328 +/- 24 pg/ml with arachidonic acid (10(-5) M). Treatment with the cyclooxygenase inhibitor indomethacin attenuated arachidonic acid-induced relaxations by approximately 50% and blocked the synthesis of 6-keto-PGF1 alpha. PGI2 caused a concentration-related relaxation (EC50 of 10(-8) M and a maximal relaxation of 125 +/- 11% at 10(-7) M). BW755C, a cyclooxygenase and lipoxygenase inhibitor, inhibited arachidonic acid-induced relaxation to the same extent as indomethacin. When vessels were treated with both indomethacin and BW755C, the inhibition of relaxation was the same as either inhibitor alone. SKF 525a, a cytochrome P-450 inhibitor, reduced arachidonic acid-induced relaxation by approximately 50%. When SKF 525a was given in combination with indomethacin, the relaxation by arachidonic acid was almost completely inhibited. SKF 525a inhibited the synthesis of epoxyeicosatrienoic acids (EETs).(ABSTRACT TRUNCATED AT 250 WORDS)


1994 ◽  
Vol 197 (1) ◽  
pp. 101-118
Author(s):  
D R Streeby ◽  
T A McKean

Muskrats (Ondontra zibethicus) are common freshwater diving mammals exhibiting a bradycardia with both forced and voluntary diving. This bradycardia is mediated by vagal innervation; however, if hypoxia is present there may be local factors that also decrease heart rate. Some of these local factors may include ATP-sensitive potassium channel activation and extracellular accumulation of potassium ions, hydrogen ions and lactate. The purpose of this study was to investigate the role of these factors in the isolated perfused hearts of muskrats and of a non-diving mammal, the guinea pig. Although lactate and proton administration reduced heart rate in isolated muskrat and guinea pig hearts, there was no difference in the response to lactate and proton infusion between the two species. Muskrat hearts were more sensitive to the heart-rate-lowering effects of exogenously applied potassium than were guinea pig hearts. Early increases in extracellular potassium concentration during hypoxia are thought to be mediated by the ATP-sensitive potassium channel. Activation of these channels under normoxic conditions had a mildly negative chronotropic effect in both species; however, activation of these channels with Lemakalim under hypoxic conditions caused the guinea pig heart to respond with an augmented bradycardia similar to that seen in the hypoxic muskrat heart in the absence of drugs. Inhibition of these channels by glibenclamide during hypoxia was partially successful in blocking the bradycardia in guinea pig hearts, but inhibition of the same channels in hypoxic muskrat hearts had a damaging effect as two of five hearts went into contracture during the hypoxia. Thus, although ATP-sensitive potassium channels appear to have a major role in the bradycardia of hypoxia in guinea pigs, the failure to prevent the bradycardia by inhibition of these channels in muskrat hearts suggests that multiple factors are involved in the hypoxia-induced bradycardia in this species.


Epilepsia ◽  
2013 ◽  
Vol 54 (8) ◽  
pp. 1437-1443 ◽  
Author(s):  
Dorotheé G. A. Kasteleijn‐Nolst Trenité ◽  
Victor Biton ◽  
Jacqueline A. French ◽  
Bassel Abou‐Khalil ◽  
William E. Rosenfeld ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document