scholarly journals Establishment of a primed pluripotent epiblast stem cell in FGF4-based conditions

2014 ◽  
Vol 4 (1) ◽  
Author(s):  
Jin Young Joo ◽  
Hyun Woo Choi ◽  
Min Jung Kim ◽  
Holm Zaehres ◽  
Natalia Tapia ◽  
...  

Abstract Several mouse pluripotent stem cell types have been established either from mouse blastocysts and epiblasts. Among these, embryonic stem cells (ESCs) are considered to represent a “naïve”, epiblast stem cells (EpiSCs) a “primed” pluripotent state. Although EpiSCs form derivatives of all three germ layers during in vitro differentiation, they rarely incorporate into the inner cell mass of blastocysts and rarely contribute to chimera formation following blastocyst injection. Here we successfully established homogeneous population of EpiSC lines with efficient chimera-forming capability using a medium containing fibroblast growth factor (FGF)-4. The expression levels of Rex1 and Nanog was very low although Oct4 level is comparable to ESCs. EpiSCs also expressed higher levels of epiblast markers, such as Cer1, Eomes, Fgf5, Sox17 and T, and further showed complete DNA methylation of Stella and Dppa5 promoters. However, the EpiSCs were clustered separately from E3 and T9 EpiSC lines and showed a completely different global gene expression pattern to ESCs. Furthermore, the EpiSCs were able to differentiate into all three germ layers in vitro and efficiently formed teratomas and chimeric embryos (21.4%) without germ-line contribution.

2010 ◽  
Vol 22 (1) ◽  
pp. 354
Author(s):  
T. S. Rascado ◽  
J. F. Lima-Neto ◽  
S. E. R. S. Lorena ◽  
B. W. Minto ◽  
F. C. Landim-Alvarenga

The domestic cat can be used as a biological model for humans because of similarities in some disease and genetically transmitted conditions. Embryonic stem cells might complete nuclear reprogramming more efficiently than somatic cells and, therefore, are potentially useful for increasing interspecific cloning success. The objective of this study was to establish an effective culture system for inner cell mass (ICM)-derived cells in the domestic cat, testing the ability of the ICM to attach to the culture dish and to form embryonic stem cell colonies in the presence of fetal calf serum (FCS) and Knockout serum (KS). Moreover, knowing that the transcription factor Oct-4 is important for the maintenance of pluripotency in human and murine embryonic stem cells, the expression of this factor was evaluated in in vitro-produced blastocyst and in the attached ICM. Domestic cat oocytes were matured, fertilized, and cultured in vitro until the blastocyst stage. The ICM was mechanically isolated (n = 60) using a scalpel blade and transferred to a monolayer of chemically inactivated cat fibroblasts with 10 μg mL-1 mitomicin C. The base culture media (BM) was DMEM/F12 supplemented with nonessential amino acids, glutamine, leukemia inhibitory factor, fibroblast growth factor-2, 2-mercaptoethanol, and antibiotics. Three groups were tested: G1 = BM with 20% FCS (20); G2 = BM with 20% KS (20); G3 = BM with 15% FSC and 5% KS (20). Culture was performed in a 5% CO2 in air incubator at 38.5°C. No statistical difference was observed among groups in relation to ICM attachment (chi-square, P > 0.05). Ninety percent of the ICM presented good adhesion after 3 days of culture and started to grow in all media tested. However, until now, no good colonies were formed. Fifteen blastocysts and 10 attached ICM were fixed in 3% paraformaldehyde and permeabilized in 0.2% triton X-100 in PBS. Subsequently, to block nonspecific binding of the primary antibody, the preadsorption for 2 h at room temperature with OCT4 blocking peptide (sc-8628P, Santa Cruz Biotechnology, Santa Cruz, CA, USA) was used. Samples were incubated with Oct4 antibody (N-19 : sc 8628, Santa Cruz Biotechnology) and with the appropriate secondary antibody (A21431, Invitrogen) and examined by fluorescence microscopy. Oct4 protein was detected both in the ICM and trophoderm cells, and it was distributed in cytoplasm and nuclei. These embryos were also stained with Hoechst 33342. Although further standardization of the culture media is needed, it seems that the KS can be replaced by FCS in cat embryonic stem cell culture. Furthermore, the immunostain of the trophoderm with Oct-4 indicates a difference in the expression of this factor when compared with its expression on human and murine blastocysts. This could be related to in vitro production, or Oct 4 is not a good pluripotency marker for cat embryos and cat embryonic stem cell, consequently. This fact has been noted in goat, bovine, and porcine embryos. Acknowledgment is given to FAPESP.


2019 ◽  
Vol 55 (7) ◽  
pp. 473-481 ◽  
Author(s):  
Ali Cihan Taskin ◽  
Ahmet Kocabay ◽  
Ayyub Ebrahimi ◽  
Sercin Karahuseyinoglu ◽  
Gizem Nur Sahin ◽  
...  

2010 ◽  
Vol 88 (3) ◽  
pp. 479-490 ◽  
Author(s):  
Guoliang Meng ◽  
Shiying Liu ◽  
Xiangyun Li ◽  
Roman Krawetz ◽  
Derrick E. Rancourt

Embryonic stem cells (ESCs) are derived from the inner cell mass (ICM) of the blastocyst. Because of their ability to differentiate into a variety of cell types, human embryonic stem cells (hESCs) provide an unlimited source of cells for clinical medicine and have begun to be used in clinical trials. Presently, although several hundred hESC lines are available in the word, only few have been widely used in basic and applied research. More and more hESC lines with differing genetic backgrounds are required for establishing a bank of hESCs. Here, we report the first Canadian hESC lines to be generated from cryopreserved embryos and we discuss how we navigated through the Canadian regulatory process. The cryopreserved human zygotes used in this study were cultured to the blastocyst stage, and used to isolate ICM via microsurgery. Unlike previous microsurgery methods, which use specialized glass or steel needles, our method conveniently uses syringe needles for the isolation of ICM and subsequent hESC lines. ICM were cultured on MEF feeders in medium containing FBS or serum replacer (SR). Resulting outgrowths were isolated, cut into several cell clumps, and transferred onto fresh feeders. After more than 30 passages, the two hESC lines established using this method exhibited normal morphology, karyotype, and growth rate. Moreover, they stained positively for a variety of pluripotency markers and could be differentiated both in vitro and in vivo. Both cell lines could be maintained under a variety of culture conditions, including xeno-free conditions we have previously described. We suggest that this microsurgical approach may be conducive to deriving xeno-free hESC lines when outgrown on xeno-free human foreskin fibroblast feeders.


2016 ◽  
Vol 13 (123) ◽  
pp. 20160613 ◽  
Author(s):  
Sebastian V. Hadjiantoniou ◽  
David Sean ◽  
Maxime Ignacio ◽  
Michel Godin ◽  
Gary W. Slater ◽  
...  

During embryogenesis, the spherical inner cell mass (ICM) proliferates in the confined environment of a blastocyst. Embryonic stem cells (ESCs) are derived from the ICM, and mimicking embryogenesis in vitro , mouse ESCs (mESCs) are often cultured in hanging droplets. This promotes the formation of a spheroid as the cells sediment and aggregate owing to increased physical confinement and cell–cell interactions. In contrast, mESCs form two-dimensional monolayers on flat substrates and it remains unclear if the difference in organization is owing to a lack of physical confinement or increased cell–substrate versus cell–cell interactions. Employing microfabricated substrates, we demonstrate that a single geometric degree of physical confinement on a surface can also initiate spherogenesis. Experiment and computation reveal that a balance between cell–cell and cell–substrate interactions finely controls the morphology and organization of mESC aggregates. Physical confinement is thus an important regulatory cue in the three-dimensional organization and morphogenesis of developing cells.


2019 ◽  
Vol 1 (1) ◽  

Stem cells have the ability to go through various cell divisions and also maintain undifferentiated state. Stem cells are Embryonic (Pluripotent) and adult stem cells. Pluripotent stem cells give rise to all tissues such as ectoderm, mesoderm and endoderm. Embryonic stem cells isolated from inner cell mass of embryo blastocyst. Adult stem cells are also undifferentiated cells present in adult organisms and repair the tissue when damaged occurs but number in less. Adult stem cells are present in bone marrow, adipose tissue, blood and juvenile state umbilical cord and tissue of specific origin like liver, heart, intestine and neural tissue. Embryonic stem cells from blastocyst have the ethical problems and tumorogenecity. These can be identified by flow cytometry. There are wide range of stem cell markers which are useful in identifying them. Most of the pluripotent cell markers are common with tumor cell markers which throws a challenge for certainty.


2004 ◽  
Vol 24 (15) ◽  
pp. 6710-6718 ◽  
Author(s):  
Mirei Murakami ◽  
Tomoko Ichisaka ◽  
Mitsuyo Maeda ◽  
Noriko Oshiro ◽  
Kenta Hara ◽  
...  

ABSTRACT TOR is a serine-threonine kinase that was originally identified as a target of rapamycin in Saccharomyces cerevisiae and then found to be highly conserved among eukaryotes. In Drosophila melanogaster, inactivation of TOR or its substrate, S6 kinase, results in reduced cell size and embryonic lethality, indicating a critical role for the TOR pathway in cell growth control. However, the in vivo functions of mammalian TOR (mTOR) remain unclear. In this study, we disrupted the kinase domain of mouse mTOR by homologous recombination. While heterozygous mutant mice were normal and fertile, homozygous mutant embryos died shortly after implantation due to impaired cell proliferation in both embryonic and extraembryonic compartments. Homozygous blastocysts looked normal, but their inner cell mass and trophoblast failed to proliferate in vitro. Deletion of the C-terminal six amino acids of mTOR, which are essential for kinase activity, resulted in reduced cell size and proliferation arrest in embryonic stem cells. These data show that mTOR controls both cell size and proliferation in early mouse embryos and embryonic stem cells.


2021 ◽  
Vol 22 (23) ◽  
pp. 12918
Author(s):  
Man-Ling Zhang ◽  
Yong Jin ◽  
Li-Hua Zhao ◽  
Jia Zhang ◽  
Meng Zhou ◽  
...  

The inner cell mass of the pre-implantation blastocyst consists of the epiblast and hypoblast from which embryonic stem cells (ESCs) and extra-embryonic endoderm (XEN) stem cells, respectively, can be derived. Importantly, each stem cell type retains the defining properties and lineage restriction of its in vivo tissue origin. We have developed a novel approach for deriving porcine XEN (pXEN) cells via culturing the blastocysts with a chemical cocktail culture system. The pXEN cells were positive for XEN markers, including Gata4, Gata6, Sox17, and Sall4, but not for pluripotent markers Oct4, Sox2, and Nanog. The pXEN cells also retained the ability to undergo visceral endoderm (VE) and parietal endoderm (PE) differentiation in vitro. The maintenance of pXEN required FGF/MEK+TGFβ signaling pathways. The pXEN cells showed a stable phenotype through more than 50 passages in culture and could be established repeatedly from blastocysts or converted from the naïve-like ESCs established in our lab. These cells provide a new tool for exploring the pathways of porcine embryo development and differentiation and providing further reference to the establishment of porcine ESCs with potency of germline chimerism and gamete development.


2012 ◽  
Vol 24 (1) ◽  
pp. 220
Author(s):  
J. K. Park ◽  
H. S. Kim ◽  
K. J. Uh ◽  
K. H. Choi ◽  
H. M. Kim ◽  
...  

Since pluripotent cells were first derived from the inner cell mass (ICM) of mouse blastocysts, tremendous efforts have been made to establish embryonic stem cell (ESC) lines in several domestic species including the pig; however, authentic porcine ESCs have not yet been established. It has proven difficult to derive pluripotent cells of naïve state that represents full pluripotency, due to the frequent occurrence of spontaneous differentiation into an EpiSC-like state during culture in pigs. We have been able to derive EpiSC-like porcine embryonic stem cell (pESC) lines of a differentiated non-ES cell state from blastocyst stage porcine embryos of various origins, including in vitro fertilized (IVF), in vivo derived, IVF aggregated and parthenogenetic embryos. In addition, we have generated induced pluripotent stem cells (piPSCs) via plasmid transfection of reprogramming factors (Oct4, Sox2, Klf4 and c-Myc) into porcine fibroblast cells. In this study, we analysed characteristics such as marker expression, pluripotency and the X chromosome inactivation (XCI) status of our EpiSC-like pESC lines along with our piPSC line. Our results show that these cell lines demonstrate the expression of genes associated with the Activin/Nodal and FGF2 pathways along with the expression of pluripotent markers Oct4, Sox2, Nanog, SSEA4, TRA 1-60 and TRA 1-81. Furthermore all of these cell lines showed in vitro differentiation potential; female XCI activity and a normal karyotype. Here we provide preliminary results that suggest that, as a nonpermissive species, the porcine species undergoes reprogramming into a primed state during the establishment of pluripotent stem cell lines. This work was supported by the BioGreen 21 Program (#20070401034031, PJ0081382011), Rural Development Administration, Republic of Korea.


2005 ◽  
Vol 33 (6) ◽  
pp. 1526-1530 ◽  
Author(s):  
P.W. Andrews ◽  
M.M. Matin ◽  
A.R. Bahrami ◽  
I. Damjanov ◽  
P. Gokhale ◽  
...  

Embryonal carcinoma (EC) cells are the stem cells of teratocarcinomas, and the malignant counterparts of embryonic stem (ES) cells derived from the inner cell mass of blastocyst-stage embryos, whether human or mouse. On prolonged culture in vitro, human ES cells acquire karyotypic changes that are also seen in human EC cells. They also ‘adapt’, proliferating faster and becoming easier to maintain with time in culture. Furthermore, when cells from such an ‘adapted’ culture were inoculated into a SCID (severe combined immunodeficient) mouse, we obtained a teratocarcinoma containing histologically recognizable stem cells, which grew out when the tumour was explanted into culture and exhibited properties of the starting ES cells. In these features, the ‘adapted’ ES cells resembled malignant EC cells. The results suggest that ES cells may develop in culture in ways that mimic changes occurring in EC cells during tumour progression.


2014 ◽  
Author(s):  
Virginie Mournetas ◽  
Quentin M. Nunes ◽  
Patricia A. Murray ◽  
Christopher M. Sanderson ◽  
David G. Fernig

Background. Human embryonic stem cells (hESCs) are pluripotent cells derived from the inner cell mass of in vitro fertilised blastocysts, which can either be maintained in an undifferentiated state or committed into lineages under determined culture conditions. These cells offer great potential for regenerative medicine, but at present, little is known about the mechanisms that regulate hESC stemness; in particular, the role of cell-cell and cell-extracellular matrix interactions remain relatively unexplored. Methods and results. In this study we have performed an in silico analysis of cell-microenvironment interactions to identify novel proteins that may be responsible for the maintenance of hESC stemness. A hESC transcriptome of 8,934 mRNAs was assembled using a meta-analysis approach combining the analysis of microarrays and the use of databases for annotation. The STRING database was utilised to construct a protein-protein interaction network focused on extracellular and transcription factor components contained within the assembled transcriptome. This interactome was structurally studied and filtered to identify a short list of 92 candidate proteins, which may regulate hESC stemness. Conclusion. We hypothesise that this list of proteins, either connecting extracellular components with transcriptional networks, or with hub or bottleneck properties, may contain proteins likely to be involved in determining stemness.


Sign in / Sign up

Export Citation Format

Share Document