scholarly journals The enhanced information flow from visual cortex to frontal area facilitates SSVEP response: evidence from model-driven and data-driven causality analysis

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Fali Li ◽  
Yin Tian ◽  
Yangsong Zhang ◽  
Kan Qiu ◽  
Chunyang Tian ◽  
...  
Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2085
Author(s):  
Xue-Bo Jin ◽  
Ruben Jonhson Robert RobertJeremiah ◽  
Ting-Li Su ◽  
Yu-Ting Bai ◽  
Jian-Lei Kong

State estimation is widely used in various automated systems, including IoT systems, unmanned systems, robots, etc. In traditional state estimation, measurement data are instantaneous and processed in real time. With modern systems’ development, sensors can obtain more and more signals and store them. Therefore, how to use these measurement big data to improve the performance of state estimation has become a hot research issue in this field. This paper reviews the development of state estimation and future development trends. First, we review the model-based state estimation methods, including the Kalman filter, such as the extended Kalman filter (EKF), unscented Kalman filter (UKF), cubature Kalman filter (CKF), etc. Particle filters and Gaussian mixture filters that can handle mixed Gaussian noise are discussed, too. These methods have high requirements for models, while it is not easy to obtain accurate system models in practice. The emergence of robust filters, the interacting multiple model (IMM), and adaptive filters are also mentioned here. Secondly, the current research status of data-driven state estimation methods is introduced based on network learning. Finally, the main research results for hybrid filters obtained in recent years are summarized and discussed, which combine model-based methods and data-driven methods. This paper is based on state estimation research results and provides a more detailed overview of model-driven, data-driven, and hybrid-driven approaches. The main algorithm of each method is provided so that beginners can have a clearer understanding. Additionally, it discusses the future development trends for researchers in state estimation.


2021 ◽  
Author(s):  
Sydney C. Weiser ◽  
Brian R. Mullen ◽  
Desiderio Ascencio ◽  
James B. Ackman

Recording neuronal group activity across the cortical hemispheres from awake, behaving mice is essential for understanding information flow across cerebral networks. Video recordings of cerebral function comes with challenges, including optical and movement-associated vessel artifacts, and limited references for time series extraction. Here we present a data-driven workflow that isolates artifacts from calcium activity patterns, and segments independent functional units across the cortical surface. Independent Component Analysis utilizes the statistical interdependence of pixel activation to completely unmix signals from background noise, given sufficient spatial and temporal samples. We also utilize isolated signal components to produce segmentations of the cortical surface, unique to each individual’s functional patterning. Time series extraction from these maps maximally represent the underlying signal in a highly compressed format. These improved techniques for data pre-processing, spatial segmentation, and time series extraction result in optimal signals for further analysis.


Author(s):  
Fredrik Seehusen ◽  
Ketil Stølen

We present a method for software development in which information flow security is taken into consideration from start to finish. Initially, the user of the method (i.e., a software developer) specifies the system architecture and selects a set of security requirements (in the form of secure information flow properties) that the system must adhere to. The user then specifies each component of the system architecture using UML inspired state machines, and refines/transforms these (abstract) state machines into concrete state machines. It is shown that if the abstract specification adheres to the security requirements, then so does the concrete one provided that certain conditions are satisfied.


Author(s):  
Nawfal El Moukhi ◽  
Ikram El Azami ◽  
Abdelaaziz Mouloudi ◽  
Abdelali Elmounadi

The data warehouse design is currently recognized as the most important and complicated phase in any project of decision support system implementation. Its complexity is primarily due to the proliferation of data source types and the lack of a standardized and well-structured method, hence the increasing interest from researchers who have tried to develop new methods for the automation and standardization of this critical stage of the project. In this paper, the authors present the set of developed methods that follows the data-driven paradigm, and they propose a new data-driven method called X-ETL. This method aims to automating the data warehouse design by generating star models from relational data. This method is mainly based on a set of rules derived from the related works, the Model-Driven Architecture (MDA) and the XML language.


Sign in / Sign up

Export Citation Format

Share Document