scholarly journals The stability of aluminium oxide monolayer and its interface with two-dimensional materials

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Ting Ting Song ◽  
Ming Yang ◽  
Jian Wei Chai ◽  
Martin Callsen ◽  
Jun Zhou ◽  
...  
2021 ◽  
Vol 2108 (1) ◽  
pp. 012082
Author(s):  
Cuicui Sun ◽  
Mengmeng Liu

Abstract Since the discovery of graphene, two-dimensional materials have quickly won widespread attention in the academic community. Borene is a two-dimensional isomer of boron and the lightest element Dirac material. It becomes the latest and promising two-dimensional material due to its unique structure and electronic properties. In the periodic table, B is a close neighbor of C and has a certain similarity with C. It can also form a hexagonal honeycomb structure. An additional B atom is added to the center of the ring to form a triangular lattice borene. The triangular borene has surplus electrons and belongs to a multi-electron state, which is equivalent to a metastable structure. In this paper, the first principles are used to study the F functionalized modification of the triangular borene. The aim is to transfer the surplus electrons in the system, and probe its structural stability and electronic structure characteristics. The study found that functional modification significantly improved the stability of borene. This can provide feasible ideas and practical guidance for the experimental synthesis of stable boronene.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Xue-Yang Song ◽  
Chong Wang ◽  
Ashvin Vishwanath ◽  
Yin-Chen He

Abstract Quantum magnets provide the simplest example of strongly interacting quantum matter, yet they continue to resist a comprehensive understanding above one spatial dimension. We explore a promising framework in two dimensions, the Dirac spin liquid (DSL) — quantum electrodynamics (QED3) with 4 Dirac fermions coupled to photons. Importantly, its excitations include magnetic monopoles that drive confinement. We address previously open key questions — the symmetry actions on monopoles on square, honeycomb, triangular and kagome lattices. The stability of the DSL is enhanced on triangular and kagome lattices compared to bipartite (square and honeycomb) lattices. We obtain the universal signatures of the DSL on triangular and kagome lattices, including those of monopole excitations, as a guide to numerics and experiments on existing materials. Even when unstable, the DSL helps unify and organize the plethora of ordered phases in correlated two-dimensional materials.


2018 ◽  
Author(s):  
Penny Perlepe ◽  
Rodolphe Clérac ◽  
Itziar Oyarzabal ◽  
Corine Mathonière

Nanophotonics ◽  
2020 ◽  
Vol 9 (16) ◽  
pp. 4719-4728
Author(s):  
Tao Deng ◽  
Shasha Li ◽  
Yuning Li ◽  
Yang Zhang ◽  
Jingye Sun ◽  
...  

AbstractThe molybdenum disulfide (MoS2)-based photodetectors are facing two challenges: the insensitivity to polarized light and the low photoresponsivity. Herein, three-dimensional (3D) field-effect transistors (FETs) based on monolayer MoS2 were fabricated by applying a self–rolled-up technique. The unique microtubular structure makes 3D MoS2 FETs become polarization sensitive. Moreover, the microtubular structure not only offers a natural resonant microcavity to enhance the optical field inside but also increases the light-MoS2 interaction area, resulting in a higher photoresponsivity. Photoresponsivities as high as 23.8 and 2.9 A/W at 395 and 660 nm, respectively, and a comparable polarization ratio of 1.64 were obtained. The fabrication technique of the 3D MoS2 FET could be transferred to other two-dimensional materials, which is very promising for high-performance polarization-sensitive optical and optoelectronic applications.


ACS Nano ◽  
2021 ◽  
Vol 15 (4) ◽  
pp. 7155-7167
Author(s):  
Alireza Taghizadeh ◽  
Kristian S. Thygesen ◽  
Thomas G. Pedersen

Sign in / Sign up

Export Citation Format

Share Document