scholarly journals ClC-3 Chloride Channel Proteins Regulate the Cell Cycle by Up-regulating cyclin D1-CDK4/6 through Suppressing p21/p27 Expression in Nasopharyngeal Carcinoma Cells

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Dong Ye ◽  
Hai Luo ◽  
Zhouyi Lai ◽  
Lili Zou ◽  
Linyan Zhu ◽  
...  
2012 ◽  
Vol 303 (1) ◽  
pp. C14-C23 ◽  
Author(s):  
Liwei Wang ◽  
Wenbo Ma ◽  
Linyan Zhu ◽  
Dong Ye ◽  
Yuan Li ◽  
...  

Acid-activated chloride currents have been reported in several cell types and may play important roles in regulation of cell function. However, the molecular identities of the channels that mediate the currents are not defined. In this study, activation of the acid-induced chloride current and the possible candidates of the acid-activated chloride channel were investigated in human nasopharyngeal carcinoma cells (CNE-2Z). A chloride current was activated when extracellular pH was reduced to 6.6 from 7.4. However, a further decrease of extracellular pH to 5.8 inhibited the current. The current was weakly outward-rectified and was suppressed by hypertonicity-induced cell shrinkage and by the chloride channel blockers 5-nitro-2–3-phenylpropylamino benzoic acid (NPPB), tamoxifen, and 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid disodium salt hydrate (DIDS). The permeability sequence of the channel to anions was I− > Br− > Cl− > gluconate−. Among the ClC chloride channels, ClC-3 and ClC-7 were strongly expressed in CNE-2Z cells. Knockdown of ClC-3 expression with ClC-3 small interfering (si)RNA prevented the activation of the acid-induced current, but silence of ClC-7 expression with ClC-7 siRNA did not significantly affect the current. The results suggest that the chloride channel mediating the acid-induced chloride current was volume sensitive. ClC-3 is a candidate of the channel proteins that mediate or regulate the acid-activated chloride current in nasopharyngeal carcinoma cells.


2014 ◽  
Vol 10 (4) ◽  
pp. 1709-1716 ◽  
Author(s):  
GANG PENG ◽  
RU-BO CAO ◽  
YUE-HUA LI ◽  
ZHEN-WEI ZOU ◽  
JING HUANG ◽  
...  

2021 ◽  
Vol 85 (3) ◽  
pp. 553-561
Author(s):  
Chenxia Ren ◽  
Cuiling Wu ◽  
Changqing Yang ◽  
Changhong Lian

ABSTRACT Vitamin C has re-emerged as a promising anticancer agent. This study attempts to analyze the differential gene expression of profiles GSE11919 to look for some clues, and the most significant cell cycle pathway caused by vitamin C was identified by integrated bioinformatics analysis. Inspired by this, we investigated the effect of vitamin C treatment on gastric carcinoma cells by detection of cell cycle, apoptosis, and autophagy. Vitamin C significantly elevated the percentage of cells at G0/G1 phase, whereas the percentage of S phase cells was decreased. Meanwhile, vitamin C treatment resulted in downregulation of cell cycle-related protein Cyclin D1. We deduced that the downregulation of Cyclin D1 by vitamin C accompanied by significantly increased 5′AMP-activated protein kinase and induced autophagy in MKN45 cells. These results suggest that vitamin C has the antiproliferation effect on gastric carcinoma cells via the regulation of cell cycle and autophagy by Cyclin D1.


2013 ◽  
Vol 29 (6) ◽  
pp. 2101-2108 ◽  
Author(s):  
KEFENG WU ◽  
YI LIU ◽  
YINGNIAN LV ◽  
LIAO CUI ◽  
WENDE LI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document