scholarly journals Overlooked Role of Mesoscale Winds in Powering Ocean Diapycnal Mixing

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Zhao Jing ◽  
Lixin Wu ◽  
Xiaohui Ma ◽  
Ping Chang
Keyword(s):  
2013 ◽  
Vol 43 (4) ◽  
pp. 824-835 ◽  
Author(s):  
Zhao Jing ◽  
Lixin Wu

Abstract Profiles of potential density obtained from CTD measurements during the Hawaii Ocean Time series (HOT) program in the vicinity of the island of Oahu, Hawaii, are used to evaluate low-frequency variability of turbulent kinetic dissipation rates based on a finescale parameterization method. A distinct seasonal cycle, as well as an increasing trend of dissipation rates, is found in the upper 300–600 m. The trend is mainly due to the much weaker diapycnal mixing in the first four years of the record, that is, 1988–92. In the upper 300–600 m, enhanced diapycnal mixing is found under anticyclonic eddies with the mean dissipation rate about 53% larger than that under eddy-free conditions. The modulation of dissipation rates by anticyclonic eddies becomes more evident with increasing eddy strength. The role of cyclonic eddies in modulating diapycnal mixing is almost negligible compared with that of anticyclonic eddies. The mean dissipation rate under cyclonic eddies is comparable to that under eddy-free conditions with a difference of less than 10%. Seasonality of the dissipation rates is partly modulated by the seasonal variation of anticyclonic eddies.


2015 ◽  
Vol 45 (12) ◽  
pp. 3137-3154 ◽  
Author(s):  
Zhao Jing ◽  
Ping Chang ◽  
Steven F. DiMarco ◽  
Lixin Wu

AbstractMoored ADCP data collected in the northern Gulf of Mexico are analyzed to examine near-inertial internal waves and their contribution to subthermocline diapycnal mixing based on a finescale parameterization of deep ocean mixing. The focus of the study is on the impact of near-inertial internal waves generated by an extreme weather event—that is, Hurricane Katrina—and by month-to-month variation in weather patterns on the diapycnal mixing. The inferred subthermocline diapycnal mixing exhibits pronounced elevation in the wake of Katrina. Both the increased near-inertial (0.8–1.8f, where f is the Coriolis frequency) and superinertial (>1.8f) shear variances contribute to the elevated diapycnal mixing, but the former plays a more dominant role. The intense wind work on near-inertial motions by the hurricane is largely responsible for the energetic near-inertial shear variance. Energy transfer from near-inertial to superinertial internal waves, however, appears to play an important role in elevating the superinertial shear variance. The inferred subthermocline diapycnal mixing in the region also exhibits significant month-to-month variation with the estimated diffusivity in January 2006 about 3 times the values in November and December 2005. The subseasonal change in the diapycnal mixing mainly results from the subseasonal variation of the near-inertial wind work that causes intensification of the near-inertial shear in January 2006.


2008 ◽  
Vol 38 (7) ◽  
pp. 1607-1613 ◽  
Author(s):  
David P. Marshall ◽  
Alberto C. Naveira Garabato

Abstract The parameterization of geostrophic eddies represents a large sink of energy in most ocean models, yet the ultimate fate of this eddy energy in the ocean remains unclear. The authors conjecture that a significant fraction of the eddy energy may be transferred to internal lee waves and oscillations over rough bottom topography, leading to bottom-enhanced diapycnal mixing. A range of circumstantial evidence in support of this conjecture is presented and discussed. The authors further propose a modification to the Gent and McWilliams eddy parameterization to account for the bottom-enhanced diapycnal mixing.


2004 ◽  
Vol 34 (12) ◽  
pp. 2642-2658 ◽  
Author(s):  
Paola Cessi ◽  
Maurizio Fantini

Abstract The role of baroclinic eddies in transferring thermal gradients laterally, and thus determining the stratification of the ocean, is examined. The hypothesis is that the density differences imposed at the surface by differential heating are a source of available potential energy that can be partially released by mesocale eddies with horizontal scales on the order of 100 km. Eddy fluxes balance the diapycnal mixing of heat and thus determine the vertical scale of penetration of horizontal thermal gradients (i.e., the depth of the thermocline). This conjecture is in contrast with the current thinking that the deep stratification is determined by a balance between diapycnal mixing and the large-scale thermohaline circulation. Eddy processes are analyzed in the context of a rapidly rotating primitive equation flow driven by specified surface temperature, with isotropic diffusion and viscosity. The barotropic component of the eddies is found to be responsible for most of the heat flux, and so the eddy transport is horizontal rather than isopycnal. This eddy transport takes place in the shallow surface layer where eddies, as well as the mean temperature, undergo diabatic, irreversible mixing. Scaling laws for the depth of the thermocline as a function of the external parameters are proposed. In the classical thermocline theory, the depth of the thermocline depends on the diffusivity, the rotation rate, and the imposed temperature gradient. In this study the authors find an additional dependence on the viscosity and on the domain width.


JAMA ◽  
1966 ◽  
Vol 195 (12) ◽  
pp. 1005-1009 ◽  
Author(s):  
D. J. Fernbach
Keyword(s):  

JAMA ◽  
1966 ◽  
Vol 195 (3) ◽  
pp. 167-172 ◽  
Author(s):  
T. E. Van Metre

2018 ◽  
Vol 41 ◽  
Author(s):  
Winnifred R. Louis ◽  
Craig McGarty ◽  
Emma F. Thomas ◽  
Catherine E. Amiot ◽  
Fathali M. Moghaddam

AbstractWhitehouse adapts insights from evolutionary anthropology to interpret extreme self-sacrifice through the concept of identity fusion. The model neglects the role of normative systems in shaping behaviors, especially in relation to violent extremism. In peaceful groups, increasing fusion will actually decrease extremism. Groups collectively appraise threats and opportunities, actively debate action options, and rarely choose violence toward self or others.


Sign in / Sign up

Export Citation Format

Share Document