scholarly journals Land-use types and soil chemical properties influence soil microbial communities in the semiarid Loess Plateau region in China

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Qin Tian ◽  
Takeshi Taniguchi ◽  
Wei-Yu Shi ◽  
Guoqing Li ◽  
Norikazu Yamanaka ◽  
...  
2019 ◽  
Vol 13 (1) ◽  
pp. 20-26
Author(s):  
Feng Sun ◽  
Yuyi Ou ◽  
Qiaojing Ou ◽  
Lingda Zeng ◽  
Hanxia Yu ◽  
...  

Abstract Aims Natural hybridization between invasive and native species, as a form of adaptive evolution, threatens biodiversity worldwide. However, the potential invasive mechanisms of hybrids remain essentially unexplored, especially insights from soil chemical properties and soil microbial communities. Methods In a field experiment, soil microbial community, potassium-solubilizing bacteria, phosphorus-solubilizing bacteria, enzyme activities, and light-saturated photosynthetic rate were measured in invasive Sphagneticola trilobata and its hybrid with native Sphagneticola calendulacea in 2 years. Important Findings In general, soil dissolved organic carbon and the biomass of phosphorus-solubilizing bacteria were significantly higher under the hybrid treatment than S. trilobata and S. calendulacea. However, there were no significant differences in acid phosphatase, total PLFAs, bacterial PLFAs, fungi PLFAs, cellulase, and urase in these treatments. The hybrids had significantly higher light-saturated photosynthetic rate, photosynthetic nitrogen-, phosphorus-, potassium- use efficiencies than the invasive S. trilobata, but no significant difference with S. calendulacea. The total biomass and root biomass of hybrids were higher than S. calendulacea. Our results indicate that the hybrids species have a higher invasive potential than S. calendulacea, which may aggravate the local extinction of S. calendulacea in the future.


2013 ◽  
Vol 7 (8) ◽  
pp. 1641-1650 ◽  
Author(s):  
Christian L Lauber ◽  
Kelly S Ramirez ◽  
Zach Aanderud ◽  
Jay Lennon ◽  
Noah Fierer

2021 ◽  
Author(s):  
Li Liu ◽  
Hailu Cao ◽  
Yannan Geng ◽  
Ya Fan ◽  
Haiyang Feng ◽  
...  

Abstract It is of great importance to understand the effects of cropping practices of Bupleurum chinense on the properties of rhizosphere soil. Therefore, the chemical properties of rhizosphere soil and the rhizosphere microbiome were assessed in the field trial with Bupleurum and three cropping practices (continuous monocropping, Bupleurum-corn intercropping and Bupleurum-corn rotation). The results showed cropping practices changed the chemical properties of the rhizosphere soil and composition, structure and diversity of the rhizosphere microbial communities. Continuous monocropping of Bupleurum chinense not only decreased soil pH and the contents of NO3--N and available K, but also decreased the alpha diversity of bacteria and beneficial microorganisms. However, Bupleurum-corn rotation improved soil chemical properties and reduced the abundance of harmful microorganisms. Soil chemical properties, especially the contents of NH4+-N, soil organic matter (SOM) and available K, were the key factors affecting the structure and composition of microbial communities in the rhizosphere soil. These findings could provide a new basis for overcoming problems associated with continuous cropping and promote development of B. chinense planting industry by improving soil microbial communities.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wen Yang ◽  
Nasreen Jeelani ◽  
Andong Cai ◽  
Xiaoli Cheng ◽  
Shuqing An

AbstractCoastal reclamation seriously disturbs coastal wetland ecosystems, while its influences on soil microbial communities remain unclear. In this study, we examined the impacts of coastal reclamation on soil microbial communities based on phospholipid fatty acids (PLFA) analysis following the conversion of Phragmites australis wetlands to different land use types. Coastal reclamation enhanced total soil microbial biomass and various species (i.e., gram-positive bacterial, actinomycete, saturated straight-chain, and branched PLFA) following the conversion of P. australis wetland to aquaculture pond, wheat, and oilseed rape fields. In contrast, it greatly decreased total soil microbial biomass and various species following the conversion of P. australis wetland to town construction land. Coastal reclamation reduced fungal:bacterial PLFA, monounsaturated:branched PLFA ratios, whereas increasing gram-positive:gram-negative PLFA ratio following the conversion of P. australis wetland to other land use types. Our study suggested that coastal reclamation shifted soil microbial communities by altering microbial biomass and community composition. These changes were driven primarily by variations in soil nutrient substrates and physiochemical properties. Changes in soil microbial communities following coastal reclamation impacted the decomposition and accumulation of soil carbon and nitrogen, with potential modification of carbon and nitrogen sinks in the ecosystems, with potential feedbacks in response to climate change.


Sign in / Sign up

Export Citation Format

Share Document