scholarly journals Evidence for trivial Berry phase and absence of chiral anomaly in semimetal NbP

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Sudesh ◽  
Pawan Kumar ◽  
Prakriti Neha ◽  
Tanmoy Das ◽  
Satyabrata Patnaik

Abstract The discovery of Weyl semimetals (WSM) has brought forth the condensed matter realization of Weyl fermions, which were previously theorized as low energy excitations in high energy particle physics. Recently, transition metal mono-pnictides are under intense investigation for understanding properties of inversion-symmetry broken Weyl semimetals. Non-trivial Berry phase and chirality are important markers for characterizing topological aspects of Weyl semimetals. Most recently, theoretical calculations predict strong influence of the position of Weyl nodes with respect to Fermi surface and weak disorder that can drive WSMs into chirally symmetric Dirac semimetals. Using magneto-transport measurements in single crystals of WSM NbP, we observe an exceptionally large magnetoresistance at low temperature, which is non-saturating and linear at high fields. The origin of linear transverse magnetoresistance is assigned to charge carrier mobility fluctuations. Negative longitudinal magnetoresistance is not seen, suggesting lack of well-defined chiral anomaly in NbP. Unambiguous Shubnikov-de Haas oscillations are observed at low temperatures that are correlated to a trivial Berry phase corresponding to Fermi surface extrema at 30.5 Tesla. Our results are important towards identifying topological characteristics of Weyl semimetals and their experimental manifestations in the presence of weak disorder.

Author(s):  
E.D. Wolf

Most microelectronics devices and circuits operate faster, consume less power, execute more functions and cost less per circuit function when the feature-sizes internal to the devices and circuits are made smaller. This is part of the stimulus for the Very High-Speed Integrated Circuits (VHSIC) program. There is also a need for smaller, more sensitive sensors in a wide range of disciplines that includes electrochemistry, neurophysiology and ultra-high pressure solid state research. There is often fundamental new science (and sometimes new technology) to be revealed (and used) when a basic parameter such as size is extended to new dimensions, as is evident at the two extremes of smallness and largeness, high energy particle physics and cosmology, respectively. However, there is also a very important intermediate domain of size that spans from the diameter of a small cluster of atoms up to near one micrometer which may also have just as profound effects on society as “big” physics.


Atomic Energy ◽  
1956 ◽  
Vol 1 (4) ◽  
pp. 621-632
Author(s):  
V. A. Biryukov ◽  
B. M. Golovin ◽  
L. I. Lapidus

1977 ◽  
Vol 140 (3) ◽  
pp. 549-552 ◽  
Author(s):  
E.D. Platner ◽  
A. Etkin ◽  
K.J. Foley ◽  
J.H. Goldman ◽  
W.A. Love ◽  
...  

2019 ◽  
Vol 34 (34) ◽  
pp. 1943005 ◽  
Author(s):  
Young-Min Shin

Aspirations of modern high energy particle physics call for compact and cost efficient lepton and hadron colliders with energy reach and luminosity significantly beyond the modern HEP facilities. Strong interplanar fields in crystals of the order of 10–100 V/Å can effectively guide and collimate high energy particles. Besides continuous focusing crystals plasma, if properly excited, can be used for particle acceleration with exceptionally high gradients [Formula: see text](TeV/m). However, the angstrom-scale size of channels in crystals might be too small to accept and accelerate significant number of particles. Carbon-based nano-structures such as carbon-nanotubes (CNTs) and graphenes have a large degree of dimensional flexibility and thermo-mechanical strength and thus could be more suitable for channeling acceleration of high intensity beams. Nano-channels of the synthetic crystals can accept a few orders of magnitude larger phase-space volume of channeled particles with much higher thermal tolerance than natural crystals. This paper presents conceptual foundations of the CNT acceleration, including underlying theory, practical outline and technical challenges of the proof-of-principle experiment. Also, an analytic description of the plasmon-assisted laser acceleration is detailed with practical acceleration parameters, in particular with specifications of a typical tabletop femtosecond laser system. The maximally achievable acceleration gradients and energy gains within dephasing lengths and CNT lengths are discussed with respect to laser-incident angles and the CNT-filling ratios.


Sign in / Sign up

Export Citation Format

Share Document