Identification of C.I. Solvent Red 24 in hydrocarbon oil mixtures as an aid in oil pollution investigations

The Analyst ◽  
1975 ◽  
Vol 100 (1186) ◽  
pp. 29 ◽  
Author(s):  
P. J. Matthews
2021 ◽  
Vol 2021 ◽  
pp. 363-370
Author(s):  
M. Jomir ◽  
D. Zamfirache ◽  
A. Ene ◽  
C. Mihai

Storage of recovered oil and oily water is an important issue when it comes to maritime disasters, being a significant factor of the overall operation. Using large storage vessels is not always an option especially when the vessel is close to the shore. Currently, floating or non-inflatable tanks made of composite textile materials are used worldwide for the storage of the water/hydrocarbon mixture, regardless of the area of action (maritime or fluvial). The research carried out so far by INCDTP specialists, which consists in modelling, simulation and numerical analysis of various constructive forms and devices, led to the conclusion that for the making of a floating tank for storing water/hydrocarbon/oil mixtures, the best solution for its construction is represented by textile materials woven from high-tech yarns (p-aramid and polyamide 6.6) covered with polyurethane. The experimental model of the floating tank for the transport of oils and hydrocarbons in case of disaster was designed by INCDTP specialists and consists of five experimental models of floating materials (made of five variants of covered textile structures) and assembled in collaboration with specialists from SC CONDOR SA, in the form of a floating storage tank. The storage tank that has been created will be tested on the ground first, in order to perform all gravimetric and quality measurements


2020 ◽  
Vol 13 (1) ◽  
pp. 80-84
Author(s):  
P. A. Storozhenko ◽  
A. I. Demchenko ◽  
S. I. Kovalenko ◽  
I. Yu. Levento ◽  
V. G. Mazaeva ◽  
...  

Author(s):  
M.M. Zaderigolova ◽  
◽  
S.V. Fradkin ◽  
D.Е. Yakushev ◽  
V.A. Kalinin ◽  
...  

Author(s):  
Nikolay S. Shulaev ◽  
◽  
Valeriya V. Pryanichnikova ◽  
Ramil R. Kadyrov ◽  
Inna V. Ovsyannikova ◽  
...  

The most essential scientifific and practical task in the area of ecological safety of pipelines operation is the development and improvement of methods of purifification and restoration of oil-contaminated soils. One of the most effificient and cost effective methods is electrochemical purifification, that does not require the use of expensive chemical reagents and soil excavation. However, the consideration of non-uniform contamination of various soil sections is required. The article examines the features of the organization and technological infrastructure for electrochemical purifification of non-uniformly contaminated soils when using a single electrical energy source, a method for calculating the design parameters of the corresponding installation is proposed. Effificient purifification of non-uniformly contaminated soil when using a specifified voltage is possible through the use of different-sized electrodes. For each soil type, the amount of transmitted electric charge required for soil purifification is determined by the concentration of the contaminant. Allocation of cathodes and anodes as parallel batteries and their connection using individual buses is an effective and energy-effificient solution, since an almost-uniform electric fifield is created in an inter-electrode space, thus allowing the reduction of the interelectrode resistance of the medium.


Sign in / Sign up

Export Citation Format

Share Document