Design and investigation of calamitic liquid crystals with low aspect-ratios: rigid y-shaped 1,2,4-tris(4-alkoxyphenylethynyl)benzenes

2005 ◽  
Vol 15 (45) ◽  
pp. 4854 ◽  
Author(s):  
Hsiu-Fu Hsu ◽  
Hsin-Chou Chen ◽  
Chung-Hao Kuo ◽  
Bo-Cheng Wang ◽  
Hsien-Tai Chiu
Crystals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 143 ◽  
Author(s):  
Henricus Wensink

Many nanoparticle-based chiral liquid crystals are composed of polydisperse rod-shaped particles with considerable spread in size or shape, affecting the mesoscale chiral properties in, as yet, unknown ways. Using an algebraic interpretation of Onsager-Straley theory for twisted nematics, we investigate the role of length polydispersity on the pitch of nanorod-based cholesterics with a continuous length polydispersity, and find that polydispersity enhances the twist elastic modulus, K 2 , of the cholesteric material without affecting the effective helical amplitude, K t . In addition, for the infinitely large average aspect ratios considered here, the dependence of the pitch on the overall rod concentration is completely unaffected by polydispersity. For a given concentration, the increase in twist elastic modulus (and reduction of the helical twist) may be up to 50% for strong size polydispersity, irrespective of the shape of the unimodal length distribution. We also demonstrate that the twist reduction is reinforced in bimodal distributions, obtained by doping a polydisperse cholesteric with very long rods. Finally, we identify a subtle, non-monotonic change of the pitch across the isotropic-cholesteric biphasic region.


2016 ◽  
Vol 113 (20) ◽  
pp. 5564-5569 ◽  
Author(s):  
Peter C. Mushenheim ◽  
Joel S. Pendery ◽  
Douglas B. Weibel ◽  
Saverio E. Spagnolie ◽  
Nicholas L. Abbott

Liquid crystals (LCs), because of their long-range molecular ordering, are anisotropic, elastic fluids. Herein, we report that elastic stresses imparted by nematic LCs can dynamically shape soft colloids and tune their physical properties. Specifically, we use giant unilamellar vesicles (GUVs) as soft colloids and explore the interplay of mechanical strain when the GUVs are confined within aqueous chromonic LC phases. Accompanying thermal quenching from isotropic to LC phases, we observe the elasticity of the LC phases to transform initially spherical GUVs (diameters of 2–50 µm) into two distinct populations of GUVs with spindle-like shapes and aspect ratios as large as 10. Large GUVs are strained to a small extent (R/r < 1.54, where R and r are the major and minor radii, respectively), consistent with an LC elasticity-induced expansion of lipid membrane surface area of up to 3% and conservation of the internal GUV volume. Small GUVs, in contrast, form highly elongated spindles (1.54 < R/r < 10) that arise from an efflux of LCs from the GUVs during the shape transformation, consistent with LC-induced straining of the membrane leading to transient membrane pore formation. A thermodynamic analysis of both populations of GUVs reveals that the final shapes adopted by these soft colloids are dominated by a competition between the LC elasticity and an energy (∼0.01 mN/m) associated with the GUV–LC interface. Overall, these results provide insight into the coupling of strain in soft materials and suggest previously unidentified designs of LC-based responsive and reconfigurable materials.


2004 ◽  
Vol 126 (2) ◽  
pp. 180-188 ◽  
Author(s):  
Qi Wang ◽  
M. Gregory Forest ◽  
Ruhai Zhou

The kinetic theory developed in [1] for solutions of nonhomogeneous nematic liquid crystalline polymers (LCPs) of spheroidal molecular configurations is extended to account for the translational diffusion and the related spatial density variation. The new theory augments the effect of the density variation to the intermolecular potential, Smoluchowski equation and the elastic stress. It accounts for the molecular aspect ratio as well as the finite range molecular interaction so that it is applicable to liquid crystals ranging from rodlike liquid crystals at large aspect ratios to discotic ones at small aspect ratios. It also exhibits enhanced shape effects in the viscous stress and warrants a positive entropy production, thereby, the second law of thermodynamics. Moment averaged, approximate, mesoscopic theories for complex flow simulations are obtained via closure approximations. In the limit of weak distortional elasticity, weak translational diffusion, and weak flows, the theory yields the torque balance equation of the well-known Ericksen-Leslie theory.


Author(s):  
M. Locke ◽  
J. T. McMahon

The fat body of insects has always been compared functionally to the liver of vertebrates. Both synthesize and store glycogen and lipid and are concerned with the formation of blood proteins. The comparison becomes even more apt with the discovery of microbodies and the localization of urate oxidase and catalase in insect fat body.The microbodies are oval to spherical bodies about 1μ across with a depression and dense core on one side. The core is made of coiled tubules together with dense material close to the depressed membrane. The tubules may appear loose or densely packed but always intertwined like liquid crystals, never straight as in solid crystals (Fig. 1). When fat body is reacted with diaminobenzidine free base and H2O2 at pH 9.0 to determine the distribution of catalase, electron microscopy shows the enzyme in the matrix of the microbodies (Fig. 2). The reaction is abolished by 3-amino-1, 2, 4-triazole, a competitive inhibitor of catalase. The fat body is the only tissue which consistantly reacts positively for urate oxidase. The reaction product is sharply localized in granules of about the same size and distribution as the microbodies. The reaction is inhibited by 2, 6, 8-trichloropurine, a competitive inhibitor of urate oxidase.


Sign in / Sign up

Export Citation Format

Share Document